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Equidistribution of divergent orbits and continued fraction
expansion of rationals

Ofir David and Uri Shapira

Abstract

We establish an equidistribution result for pushforwards of certain locally finite algebraic
measures in the adelic extension of the space of lattices in the plane. As an application of
our analysis, we obtain new results regarding the asymptotic normality of the continued fraction
expansions of most rationals with a high denominator as well as an estimate on the length of
their continued fraction expansions.

By similar methods, we also establish a complementary result to Zaremba’s conjecture.
Namely, we show that given a bound M , for any large q, the number of rationals p/q ∈ [0, 1] for
which the coefficients of the continued fraction expansion of p/q are bounded by M is o(q1−ε)
for some ε > 0, which depends on M .

1. Introduction

1.1. Continued fraction expansion of rationals

We begin by describing the main application of our results. Let T : (0, 1] → [0, 1] denote the
Gauss map T (s) :=

{
s−1

}
:= s−1 − �s−1�. Let νGauss = ((1 + s) ln 2)−1ds denote the Gauss–

Kuzmin measure on [0,1]. A number s ∈ (0, 1] is rational if and only if T i(s) = 0 for some i (in
which case T i+1(s) is not defined). In this case, we denote this i by len(s) which is the length
of the (finite) continued fraction expansion (c.f.e.) of s. We also set

νs =
1

len(s)

len(s)−1∑
i=0

δT i(s).

Throughout we abuse notation and denote

(Z/qZ)× = {1 � p � q : gcd(p, q) = 1} .

Theorem 1.1. There exist sets Wq ⊆ (Z/qZ)× with limq→∞
|Wq|
ϕ(q) = 1, such that for any

choice of pq ∈ Wq, we have that

(1) len(pq/q)
2 ln(q) → ln(2)

ζ(2) where ζ is the Riemann zeta function.

(2) νpq/q
w∗
−→ νGauss.

Remark 1.2. Let w be a finite word on N. It is well known, and indeed follows from the
ergodicity of T with respect to νGauss, that for Lebesgue almost any x, the asymptotic frequency
of appearances of w in the c.f.e. of x equals

νGauss(w) def= νGauss ({y ∈ [0, 1] : the c.f.e. of y starts with w}) . (1.1)
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Let us denote by νp/q(w) the frequency of the word w in the c.f.e. of p/q; that is, the number
of appearances of w in the c.f.e. of p/q divided by len(p/q). Then, it is easy to see that since
the endpoints of the interval given by the set in (1.1) have zero νGauss measure, then the weak∗

convergence in part (2) of Theorem 1.1 implies that for any finite word w over N, we have that
νpq/q(w) → νGauss(w).

An obvious corollary of Theorem 1.1 (together with the fact that len(p/q) � 2 log2(q)) is
obtained by averaging over p ∈ (Z/qZ)× as follows.

Corollary 1.3. (1) Let ν̄q = ϕ(q)−1
∑

p∈(Z/qZ)× νp/q. Then ν̄q
w∗
−→ νGauss.

(2) Let len(q) = ϕ(q)−1
∑

p∈(Z/qZ)× len(p/q). Then len(q)
2 ln q → ln 2

ζ(2) .

This corollary was first obtain by Heilbronn [8] who also computed an error term, which
was later improved by Ustinov [15]. The upgrade from Corollary 1.3 to Theorem 1.1 is
almost automatic when the discussion is lifted to the space of lattices as can be seen in
§ 2.4. It seems not to be available when the discussion stays in the classical realm of the
Gauss map. Running over all 1 � p � q and not just (p, q) = 1, Bykovskii [2] showed that
1
q

∑q
1(len(pq )− 2 ln(2)

ζ(2) ln q)2 � ln q.
We also note that averaged versions of Theorem 1.1 with an extra average over q were

obtained by Dixon [3] who showed that for any ε > 0, there exists c > 0 such that

#

{
(p, q) :

1 � p � q � x,∣∣∣ len(p/q)
2 ln(2) − ln q

ζ(2)

∣∣∣ < 1
2 (ln q)−

1
2+ε

}
� x2 exp

(
−c lnε/2 (x)

)
,

which was later improved by Hensley in [9]. See also [1] and [16] for construction of normal
numbers with respect to c.f.e. using rational numbers.

1.2. Contrast to Zaremba’s conjecture

Recall that Zaremba’s conjecture [18] asserts that there exists M > 0 such that for all q,
there exists p ∈ (Z/qZ)× such that all the coefficients in the c.f.e. of p/q are bounded by M .
Theorem 1.1 may be interpreted as saying that Zaremba is looking for a needle in a haystack.
In fact, while Theorem 1.1 asserts that the set of p/q which are good for Zaremba is of size
o(q), the following strengthening says that it is actually o(q1−ε).

Theorem 1.4. For each M , there exists ε > 0 such that

#
{
p ∈ (Z/qZ)× : the coefficients of the c.f.e. of p/q are bounded by M

}
= o(q1−ε).

As noted to us by Moshchevitin, in [10], a stronger statement is achieved where ε is given
explicitly.

1.3. Divergent geodesics

Let G = PGL2(R), Γ = PGL2(Z) and X2 = Γ\G. The space X2 is naturally identified with
the space of homothety classes of lattices in the plane where the coset Γg corresponds to the
(homothety class of the) lattice Z2g. We shall refer to Z2 as the standard lattice and denote
its class in X2 by x0. We let G and its subgroups act on X2 from the right and usually abuse
notation and write elements of G as matrices. Consider the subgroups of G,

A =
{
a(t) =

(
e−t/2 0

0 et/2

)
: t ∈ R

}
; U =

{
us =

(
1 s
0 1

)
: t ∈ R

}
. (1.2)
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Theorem 1.1 is a consequence of a certain equidistribution theorem regarding collections of
divergent orbits of the diagonal group which we now wish to discuss. It is not hard to see that
if s = p/q is a rational in reduced form, then the A-orbit x0usA is divergent; that is, the map
t �→ x0usa(t) is a proper embedding of R in X2. In fact, for t < 0, this lattice contains the
vector et/2(0, 1) which is of length et/2 → 0 as t → −∞ and for t > 0, the lattice contains the
vector (q,−p)usa(t) = (qe−t/2, 0) which is of length � 1 when t � 2 ln q and goes to zero as
t → ∞. So, the interesting life span of the orbit x0usA is the interval {x0usa(t) : t ∈ [0, 2 ln q]}.
We therefore define for p ∈ (Z/qZ)×,

δ[0,2 ln q]
x0up/q

=
1

2 ln q

∫ 2 ln q

0

δx0up/qa(t)dt, (1.3)

which means that for a bounded continuous function on X2 we have∫
X2

fdδ[0,2 ln q]
x0up/q

:=
1

2 ln q

∫ 2 ln q

0

f(x0up/qa(t))dt.

Finally, let μHaar denote the unique G-invariant probability measure on X2. The tight relation
between the A-action on X2 and continued fractions is well understood. Indeed, we deduce
Theorem 1.1 from results in the space X2 which we now describe.

Theorem 1.5. As q → ∞, we have that

1
ϕ(q)

∑
p∈(Z/qZ)×

δ[0,2 ln q]
x0up/q

w∗
−→ μHaar.

Corollary 1.6. There exist sets Wq ⊆ (Z/qZ)× with limq→∞
|Wq|
ϕ(q) = 1, such that for any

choice of pq ∈ Wq, we have that δ
[0,2 ln(q)]
x0up/q

w∗
−→ μHaar.

As mentioned before, although it seems stronger, Corollary 1.6 follows from Theorem 1.5
using only the fact that μHaar is A-ergodic. See § 2.4 for details.

We will prove Theorem 1.5 as a consequence of the following more general equidistribution
result. We say that a sequence of probability measures ηn does not exhibit escape of mass if
any weak∗ accumulation point of it is a probability measure.

Theorem 1.7. Let Λq ⊂ (Z/qZ)× be subsets such that

(i) lim ln |Λq|
ln q = 1,

(ii) the sequence of measures 1
|Λq|

∑
p∈Λq

δ
[0,2 ln q]
x0up/q

does not exhibit escape of mass.

Then 1
|Λq|

∑
p∈Λq

δ
[0,2 ln q]
x0up/q

w∗
−→ μHaar.

Remark 1.8. Note that in Theorem 1.5, we have that |Λq| = ϕ(q) is the Euler’s totient
function and it is well known that lim lnϕ(q)

ln q = 1, which is condition (i) above (indeed, this
claim follows from the multiplicative nature of the totient function). Thus, in order to deduce
Theorem 1.5 from Theorem 1.7, we only need to show that there is no escape of mass.

1.4. A more conceptual viewpoint

Let Xn = PGLn(Z)\PGLn(R) be identified with the space of homothety classes of lattices in
Rn and let A < PGLn(R) denote the connected component of the identity of the full diagonal
group. It is well known (see [14]) that an orbit xA is divergent (that is, the map a �→ xa from
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A to Xn is proper), if and only if it contains a homothety class of an integral lattice. It is
not hard to show that in this case, there is a unique such integral lattice which minimizes the
covolume. Indeed, if Λ is an integral lattice and πi(Λ) is its projection onto the ith coordinate,
then it must be kiZ for some ki ∈ N. The covolume is minimized exactly when we move along
the A-orbit to a lattice where ki = 1 for all i. We refer to the square of this covolume as the
discriminant of the divergent orbit. Let Hq(n) be the finite collection of sublattices of Zn of
covolume q having the property that πi(Λ) = Z for i = 1, . . . , n. We leave it as an exercise to
show that the collection of divergent orbits of discriminant q2 is exactly {xA : x ∈ Hq(n)}.
By abuse of notation, we also think about Hq(n) as a subset of Xn. In dimension 2, we have
Hq(2) = {Z2(1 p

0 q) : p ∈ (Z/qZ)×}. Note that the collection of orbits {x0up/qA : p ∈ (Z/qZ)×}
in X2 is the same as {xA : x ∈ Hq(2)}.

In Theorem 1.5, we truncated the divergent orbits {xA : x ∈ Hq(2)}, since we wanted to use
the weak∗ topology which is defined on the space of finite measures on X2. It is conceptually
better to present a certain topology on the space of locally finite measures which will allow
Theorem 1.5 to be restated and conveniently generalized to a convergence statement involving
the natural locally finite A-invariant measures supported on the collection of divergent orbits
{xA : x ∈ Hq(2)}. To this end, let us denote by μxA the measure on X2 obtained by pushing a
fixed choice of Haar measure on A via the map a �→ xa (where xA is divergent and hence the
map is proper so that the pushed measure is indeed locally finite). In dimension 2, we identify
A � R by t �→ a(t) and choose the standard Lebesgue measure coming from this identification.

Let Z be a locally compact second countable Hausdorff space and let M(Z) denote the
space of locally finite-positive Borel measures on Z and let PM(Z) denote the space of
homothety classes of such (non-zero) measures. For μ ∈ M(Z), we let [μ] denote its class.
It is straightforward to define a topology on PM(Z) such that the following are equivalents
for [μn], [μ] ∈ PM(Z) (see [13]).

(1) lim[μn] = [μ].

(2) There exist constants cn such that for any compact set K ⊂ Z, cnμn|K w∗
−→ μ|K (which

means that for every f ∈ Cc(Z), cn
∫
fdμn → ∫

fdμ).
(3) For every f, g ∈ Cc(Z) for which

∫
gdμ �= 0, limn→∞

∫
fdμn∫
gdμn

→
∫
fdμ∫
gdμ

(and in particular,∫
gdμn �= 0 for all large enough n).

It is straightforward to see that if cn, c′n are sequences of scalars such that cnμn and c′nμn both
converge to μ in the sense of ((2)), then cn/c

′
n → 1.

We propose the following.

Conjecture 1.9. For any dimension n, as q → ∞, the homothety class of the locally
finite measure

∑
x∈Hq(n) μxA converges in the above topology to the homothety class of the

PGLn(R)-invariant measure on Xn.

Theorem 1.10. Conjecture 1.9 holds for n = 2.

We will see in Lemma 3.10 that Theorem 1.10 follows from (and is, in fact, equivalent to)
Theorem 1.5.

1.5. Adelic orbits

We now concentrate on the 2-dimensional case. Yet, another conceptual view point that we
wish to present and which puts the statement of Theorem 1.10 in a natural perspective is as
follows. Let A denote the ring of adeles over Q and consider the space XA = ΓA\GA (where
GA = PGL2(A) and ΓA = PGL2(Q)). Let AA < GA denote the subgroup of diagonal matrices.
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Note that the orbit x̃0AA is a closed orbit (where x̃0 denotes the identity coset ΓA). In particular,
fixing once and for all a Haar measure on AA, we obtain a Haar measure on the quotient
stabAA

(x̃0)\AA and by pushing the latter into XA via the proper embedding induced by the
map a �→ x̃0a, we obtain an AA-invariant locally finite measure μx̃0AA

supported on the closed
orbit x̃0AA. Theorem 1.10 (and hence Theorem 1.5) is implied (and, in fact, equivalent as will
be seen by the proof) to the following.

Theorem 1.11. For any sequences gi ∈ GA such that (i) the real component of gi is trivial,
(ii) the projection of gi to GA/AA is unbounded, the sequence of homothety classes of the locally
finite measures (gi)∗μx̃0AA

converges in the topology introduced above to the homothety class
of the GA-invariant measure on XA.

In fact, we propose the following.

Conjecture 1.12. In the statement of Theorem 1.11, one can omit requirement (i) from
the sequence gi.

The main result in [11] can be interpreted as saying that if gi ∈ PGL2(R) is unbounded
modulo the diagonal group A, then the homothety class of (gi)∗μx0A converges in the topology
introduced above to the homothety class of μHaar. It seems plausible (although not immediate
as far as we can see) that a proof of Conjecture 1.12 might be obtained by combining the
techniques of [11] and ours.

1.6. Structure of the paper and outline of the proofs

In § 2, we prove Theorem 1.7. We show that any weak∗ accumulation point of the sequence
of measures appearing in the statement (which is automatically A-invariant) has the same
entropy with respect to say, a(1), as the measure μHaar. Since μHaar is the unique measure
with maximal entropy, this establishes that μHaar is the only possible weak∗ accumulation
point of the above sequence and finishes the proof. We then deduce Theorem 1.5 by verifying
that the two conditions for applying Theorem 1.7 hold for Λq = (Z/qZ)×. Here, the non-trivial
part is to show that in this case, there is no escape of mass.

In § 3, we prove that Theorems 1.5, 1.10 and 1.11 are equivalent. In § 4, we review the
relation between the A action on X2 and the Gauss map and isolate the necessary technical
statements which will allow us to deduce Theorem 1.1 from Theorem 1.5. We end § 4 by proving
Theorem 1.4 the proof of which follows along similar lines as the proof of Theorem 1.1.

2. Proof of the main theorem

In this section, we prove Theorem 1.7 and deduce Theorems 1.5. We start with some notation
and definitions, and then, in § 2.1, make a minor reduction to replace the measures that appear
in the statement of Theorem 1.7 with a discrete version of themselves which is better suited
for the entropy argument. In § 2.2, we state the main tool we use in the proof (uniqueness
of measure with maximal entropy) and establish maximal entropy of the appropriate weak∗

limits which finishes the proof of Theorem 1.7. In § 2.3, we verify that the measures appearing
in the statement of Theorem 1.5 satisfy the conditions in Theorem 1.7 and by that conclude
the proof of Theorem 1.5. Finally, in § 2.4, we use the ergodicity of the Haar measure in order
to upgrade the averaged result from Theorem 1.5 to Corollary 1.6.

In this section, we set G = SL2(R), Γ = SL2(Z) and are interested in equidistribution in the
space X = X2 = Γ\G ∼= PGL2(Z)\PGL2(R). The group G then acts naturally on X and on
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the space of functions on X. We denote the positive diagonal and upper unipotent subgroups
of SL2(R) by A,U , respectively, as in (1.2).

As mentioned in § 1.3, we will work with measures on partial A-orbit defined as follows.

Definition 2.1. (i) For a finite set Λ ⊆ X, we write δΛ = 1
|Λ|

∑
x∈Λ δx. We will sometimes

write δp/q instead of δx0up/q
, and given a set Λq ⊆ (Z/qZ)×, we will identify it with the set{

x0up/q : p ∈ Λq

} ⊆ X, and simply write δΛq
.

(ii) Given a measure μ, a segment [a, b] ⊆ R and an integer k ∈ Z, we define the aver-
ages μ[a,b] = 1

b−a

∫ b

a
a(−t)μdt and μk = 1

k

∑k−1
0 a(−j)μ. Note that with these definitions

δkx = 1
k

∑k−1
0 δxa(j) and similarly, δ[a,b]

x = 1
b−a

∫ b

a
δxa(t)dt.

2.1. A reduction

The following statement is very similar to that of Theorem 1.7. The only difference is that the
continuous interval [0, 2 ln q] is replaced by the discrete first half of it Z ∩ [0, ln q].

Theorem 2.2. Let Λq ⊂ (Z/qZ)× be subsets such that

(i) lim ln |Λq|
ln q = 1,

(ii) the sequence of measures δ
�ln q�
Λq

does not exhibit escape of mass (that is, any weak∗ limit

of it is a probability measure).

Then δ
�ln q�
Λq

w∗
−→ μHaar.

For entropy considerations, it will be more convenient to work with powers of a single
transformation rather than with the continuous group A. As will be seen shortly, replacing
[0, 2 ln q] by its first half will also be more convenient. Thus, our plan is to establish Theorem 2.2
but first we deduce Theorem 1.7 from it.

Proof of Theorem 1.7 (given Theorem 2.2). Assume that Λq satisfies assumptions (i) and (ii)
of Theorem 1.7. Let τ : X → X be the automorphism taking a lattice to its dual and recall that
if x = Γg, then τ(x) = Γ(g−1)tr, where tr means the transpose, and hence τ(xa(t)) = τ(x)a(−t)
for all t ∈ R. Let us also denote p �→ p′ the map from (Z/qZ)× → (Z/qZ)× for which pp′ = −1
modulo q. We claim that

δ
[ln q,2 ln q]
Λq

= τ∗δ
[0,ln q]
Λ′

q
. (2.1)

To show (2.1), we first observe the following: Fix p ∈ (Z/qZ)× and let q′ ∈ Z be such that
(−p)p′ + qq′ = 1. We then have

x0up/qa(2 ln q) = Γ
(

1 p/q
0 1

)(
q−1 0
0 q

)
= Γ

(
q−1 p
0 q

)

= Γ
(

q −p
−p′ q′

)(
q−1 p
0 q

)
= Γ

(
1 0

−p′/q 1

)
= τ(x0up′/q).

It now follows that for all t, x0up/qa(2 ln q − t) = τ(x0up′/qa(t)), and hence (2.1) follows. We
conclude from (2.1) that

δ
[0,2 ln q]
Λq

=
1
2
δ
[0,ln q]
Λq

+
1
2
τ∗δ

[0,ln q]
Λ′

q
. (2.2)
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Since δ
[0,2 ln q]
Λq

does not exhibit escape of mass, the same is true for the sequence δ
[0,ln q]
Λq

(as

well as δ
[0,ln q]
Λ′

q
). Since

δ
[0,ln q]
Λq

=
�ln q�
ln q

δ
[0,�ln q�]
Λq

+
(

1 − �ln q�
ln q

)
δ
[�ln q�,ln q]
Λq

, (2.3)

and �ln q�
ln q → 1, we conclude that the sequence δ[0,�ln q�]

Λq
does not exhibit escape of mass. Finally,

since

δ
[0,�ln q�]
Λq

=
∫ 1

0

a(−t)∗δ
�ln q�
Λq

dt, (2.4)

we conclude that δ
�ln q�
Λq

does not exhibit escape of mass. We therefore obtain Λq satisfy
conditions (i) and (ii) from Theorem 2.2 and since we assume the validity of this theorem

at this point, we conclude that δ
�ln q�
Λq

w∗
−→ μHaar. Since μHaar is a(t)-invariant, equation (2.4)

implies δ
[0,�ln q�]
Λq

w∗
−→ μHaar. In turn, by (2.3), we get that δ

[0,ln q]
Λq

w∗
−→ μHaar.

A similar application of Theorem 2.2 for Λ′
q results in the conclusion that δ[0,ln q]

Λ′
q

w∗
−→ μHaar

and since μHaar is τ -invariant, we obtain from (2.2) that δ
[0,2 ln q]
Λq

w∗
−→ μHaar as claimed. �

2.2. Maximal entropy

We briefly recall the notion of entropy mainly to set the notation. The reader is referred to any
standard textbook on the subject for a more thorough account. See, for example, [6, 17]. Recall
that given a measurable space (Y,B), a finite measurable partition P of Y and a probability
measure μ on Y , we define the entropy of μ with respect to P to be

Hμ (P) = −
∑
Pi∈P

μ (Pi) ln (μ (Pi)) .

We refer to the sets composing the partition P as the atoms of P. Given a μ-preserving
transformation T : Y → Y , we define

∀k < � ∈ Z, P�
k =

�−1∨
i=k

T−iP,

hμ (T,P) = lim
n→∞

1
n
Hμ (Pn

0 ) = lim inf
n�1

1
n
Hμ (Pn

0 ) ,

hμ (T ) = sup
|P|<∞

hμ (T,P) .

The following characterization of μHaar in terms of maximal entropy is the main tool we use
in the proof of Theorem 2.2, where the map T : X → X is defined by

T (x) = xa (1) = x

(
e−t/2 0

0 et/2

)
.

Theorem 2.3 (see [4, 5]). Let μ be a T -invariant probability measure on X. Then
hμ(T ) � hμHaar

(T ) = 1, and there is an equality if and only if μ = μHaar.

In what follows all partitions of X are implicitly assumed to be finite and measurable.
Suppose δ

�ln q�
Λq

w∗
−→ μ, Λq ⊆ (Z/qZ)× for some sequence q → ∞ and let P be any partition of

X such that the boundaries of the atoms of P have zero μ-measure. This condition implies
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Hμ(Pm
0 ) = limq→∞H

δ
�ln q�
Λq

(Pm
0 ). Our goal in the end is to show that the entropy hμ(T,P) is

big for a well-chosen partition P, or equivalently that 1
mHμ(Pm

0 ) is big when m → ∞ which is
translated to a suitable condition on the entropy of δ�ln q�

Λq
.

Recall that for a finite set Λ ⊆ Γ\G, the measure δkΛ is the average of the measures δkx, x ∈ Λ,
and each of these measures is an average along the T -orbit. Switching the orders of these
averages, we get that

δkΛ =
1
|Λ|

∑
x∈Λ

1
k

k−1∑
i=0

δxa(i) =
1
k

k−1∑
i=0

T i

(
1
|Λ|

∑
x∈Λ

δx

)
=

1
k

k−1∑
i=0

T i (δΛ) .

The concavity of the entropy function implies that δkΛ has large entropy if most of the entropies
of T i(δΛ) are large, and these are all pushforwards of the same measure δΛ. With this idea in
mind, we have the following result the proof of which is inspired by the proof of the variational
principle in [6].

Lemma 2.4. Let Y be any measurable space, let S : Y → Y be some measurable function,
P a partition of Y and μ a probability measure on Y . We denote by μk = 1

k

∑k−1
i=0 Siμ. Then

(1) if μ =
∑k

1 aiμi is a convex combination of probability measures μi, then Hμ(P) �∑k
1 aiHμi

(P);
(2) for every n,m ∈ N, we have that

1
m
Hμn (Pm

0 ) � 1
n
Hμ (Pn

0 ) − m

n
ln |P| .

Proof. (1) Since the function α : x �→ −x ln(x) is concave in [0, 1], we obtain that

Hμ (P) =
∑
P∈P

α (μ (P )) =
∑
P∈P

α

(
k∑
1

aiμi (P )

)

�
k∑
1

ai
∑
P∈P

α (μi (P )) =
k∑
1

aiHμi
(P) .

(2) Write n = km + r � m(k + 1) where 0 � r < m. Using subadditivity we get that for
0 � u � m− 1, we have

Hμ (Pn
0 ) � Hμ

(Pkm+r
0

)
�

u−1∑
i=0

Hμ

(
S−iP)+

k−1∑
v=0

Hμ(S−(vm+u)Pm) +
dm+m−1∑
i=dm+u

Hμ(S−iP)

� m log |P| +
k−1∑
v=0

HSvm+uμ(Pm
0 ).

Summing over 0 � u � m− 1, we get that

mHμ (Pn
0 ) −m2 ln |P| �

m−1∑
u=0

k−1∑
v=0

H(Svm+uμ)(Pm
0 ) �

km−1∑
j=0

H(Sjμ)(Pm
0 )

�
n−1∑
j=0

H(Sjμ)(Pm
0 ) � nHμn (Pm

0 ) ,
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where in the last step we used part (1). It then follows that 1
mHμn(Pm

0 ) � 1
nHμ(Pn

0 ) −
m
n ln |P|. �

Corollary 2.5. Suppose Λq ⊂ (Z/qZ)× and δ
�ln q�
Λq

w∗
−→ μ along some sequence of positive

integers q for a measure μ on X. Then, if P is a partition whose atoms have boundary of zero

μ-measure, then hμ(T,P) � lim supq→∞
1

�ln q�H(δΛq )(P�ln q�
0 ).

Proof. Follows from Lemma 2.4 and since m
�ln q� ln |P| → 0 as q → ∞. �

By the corollary above, we are left with the problem of showing that
lim supq→∞

1
�ln q�H(δΛq )(P�ln q�

0 ) is big. Suppose that we can show that for every S ∈ P�ln q�
0 ,

|S ∩ Λq| � r or in other words δΛq
(S) � r

|Λq| . This would imply

1
�ln q�HδΛq

(P�ln q�
0 ) =

1
�ln q�

∑
S∈P�ln q�

0

δΛq
(S) ln

1
δΛq

(S)

� 1
�ln q�

∑
S∈P�ln q�

0

δΛq
(S) ln

|Λq|
r

=
ln |Λq|
�ln q� − ln r

�ln q� . (2.5)

If |Λq| is big enough and r is small enough; that is, ln |Λq|
�ln q� − ln r

�ln q� → 1, then we get the lower
bound that we wish to establish. We will follow this line of argument with a certain complication
that arises. The bound r will basically come from the fact that the diameter of S is small and
the points of Λq are well separated, but, in fact, one cannot control uniformly the diameter of
the atoms of P�ln q�

0 . Lemma 2.9 below shows that one can find a partition for which one can
do so for most atoms. Before stating Lemma 2.9, we introduce some terminology.

Recall that X is naturally identified with the space of unimodular lattices in the plane. For
a lattice x ∈ X, we define the height of x to be

ht(x) = max
{||v||−1 : 0 �= v ∈ x

}
,

and set X�M = {x ∈ X : ht(x) � M} which is compact (similarly, we define
X<M , X�M , X>M ). Under this notation, X =

⋃∞
1 X�M is σ-compact.

Definition 2.6. For H � SL2(R), define BH
r = {I + W ∈ H : ||W ||∞ < r}. In

particular, for U+, U−A � SL2(R), we have BU+

r = {I + tE1,2 : |t| < r} and BU−A
r =

{I + W ∈ SL2(R) : W1,2 = 0, |Wi,j | < r}. We also write Bη,N = BU+

ηe−NBU−A
η , Bη := Bη,0.

Definition 2.7. A (finite measurable) partition P of X is called an (M,η) partition if P =
{P0, P1, . . . , Pn} where P0 = X>M and Pi ⊆ xiBη, xi ∈ X for 1 � i � n. If μ is a probability
measure on X, then P is called an (M,η, μ) partition if in addition μ(∂Pi) = 0 for all i.

Remark 2.8. Given a measure μ, one can construct (M,η, μ)-partitions for arbitrary large
M and arbitrary small η in abundance. To see this, we note that μ(∂X>M ) = 0 outside a
countable set of numbers M and after defining P0 = X>M one defines the atoms Pi by a
disjointification procedure starting with a finite cover of the compact set X�M by balls of
arbitrarily small radius having μ-null boundary. The point here being is that for a given center
x, outside a countable set or radii μ(∂xBr) = 0.
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Lemma 2.9 is a slight adaptation of Lemma 4.5 from [5]. For convenience, we added the full
proof in the Appendix (see also Remark A.3).

Lemma 2.9 (Existence of good partitions [5]). For any M > 1, there exists some 0 < η0(M)
such that for any 0 < η � η0(M) and an (M, 1

10η) partition P of X, the following holds: For
any κ ∈ (0, 1) and any N > 0, there exists some X ′ ⊆ X�M such that

(1) X ′ is a union of S1, . . . , Sl ∈ PN
0 .

(2) Each such Sj is contained in a union of at most CκN many balls of the form zBη,N with
z ∈ Sj for some absolute constant C.

(3) μ(X ′) � 1 − μ(X>M ) − μN (X>M )κ−1 for any probability measure μ on X (where μN =
1
N

∑N−1
n=0 Tn

∗ μ).

Lemma 2.9 gives us the tool to produce partitions whose entropies could be controlled in
the proof of Theorem 2.2. The last bit of information we need before turning to the proof of
Theorem 2.2 is the following separation lemma.

Lemma 2.10 (Good Separation). Let p1, p2 ∈ (Z/qZ)×. If Γup1/q,Γup2/q ∈ zBη,�ln q�, for

some η < 1
100 , then p1 = p2.

Proof. Given the assumption, there exist some b1, b2 ∈ Bη,�ln(q)� such that Γupi/q = zbi,
and hence u−p1/qγup2/q = b−1

1 b2 for some γ = (a b

c d) ∈ SL2(Z). Applying Lemma A.1, this is
contained in B10η,�ln(q)�. On the other hand, this expression equals to

(
1 −p1

q
0 1

)(
a b

c d

)(
1

p2

q
0 1

)
=

⎛
⎜⎜⎝
a− p1

q
c b− p1

q
d +

p2

q

(
a− p1

q
c

)
c d +

p2

q
c

⎞
⎟⎟⎠ . (2.6)

We conclude that c, the bottom left coordinate, is at most 10η < 1 in absolute value, so that
c = 0. It then follows similarly that a = d = 1. We are then left with the top right coordinate
which is b + p2−p1

q which need to be at most (1 + 10η)10ηe−�ln q� < 1
q in absolute value, so we

must have that p1 = p2 and we are done. �

Finally, after collecting all the above information, we are in a position to prove Theorem 2.2
(and by that complete also the proof of Theorem 1.7).

Proof of Theorem 2.2. It is enough to show that μHaar is the only accumulation point of
δ
�ln q�
Λq

. Let μ be such an accumulation point, which is necessarily T -invariant and by assumption
(ii) is a probability measure, and restrict attention to a sequence of positive integers q for

which δ
�ln q�
Λq

w∗
−→ μ. We shall show that hμ(T ) = 1 and therefore by Theorem 2.3 conclude that

μ = μHaar as desired.
By Corollary 2.5, for a partition P whose atoms have boundary of zero μ-measure, we have

that

hμ(T,P) � lim sup
q

1
�ln q�HδΛq

(P�ln q�
0 ). (2.7)

Let P be an (M,η, μ)-partition (see Definition 2.7 and Remark 2.8). Fix κ > 0 and
N = �ln(q)� and let X ′ be as in Lemma 2.9. If P ∈ P�ln q� is such that P ⊆ X ′, then Lemma 2.9
implies that it can be covered by Cκ�ln q� sets which by Lemma 2.10 contain at most one element
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from Λq each. This translates to the bound δΛq
(P ) � 1

|Λq|C
κ�ln(q)� and therefore,

1
�ln q�H(δΛq )(P�ln q�

0 ) � − 1
�ln q�

∑
P⊆X′

δΛq
(P ) ln(δΛq

(P ))

� − 1
�ln q�

∑
P⊆X′

δΛq
(P ) ln

(
1

|Λq|C
κ�ln q�

)

=
1

�ln q�δΛq
(X ′) (ln |Λq| − κ �ln q� ln(C))

�
(
1 − δ

�ln q�
Λq

(X�M )κ−1
)( ln |Λq|

ln q
− κ lnC

)
. (2.8)

Given ε > 0, using assumptions (i) and (ii), namely, lim ln |Λq|
ln q = 1 and limM→∞ limq→∞ ×

δ
�ln q�
Λq

(X�M ) = 0, we see that we can choose M to be big enough and κ to be small enough so
that for all large enough q the expression on the right in (2.8) is � (1 − ε)(1 − ε). We conclude
from (2.7) that hμ(T ) = supP hμ(T,P) � 1 which concludes the proof. �

2.3. No escape of mass

Our goal in this section is to prove Theorem 1.5 by showing that the sets Λq = (Z/qZ)× satisfy
the conditions (i) and (ii) of Theorem 1.7. Throughout this section, we set Λq = (Z/qZ)× and
μq = δΛq

.
We begin with verifying that condition (i) holds which is the content of the following lemma.

Lemma 2.11. As q → ∞, lnϕ(q)
ln q → 1.

Proof. Fix q and let pi, i = 1, . . . ω(q) be its prime divisors. Since

ϕ(q) = q

ω(q)∏
i=1

(1 − p−1
i ), (2.9)

we have that

lnϕ(q) = ln q +
ω(q)∑
i=1

ln(1 − p−1) � ln q +
ω(q)∑
i=1

ln(1/2) = ln q − ω(q) ln 2.

We conclude that

1 − ω(q)
ln q

ln 2 � lnϕ(q)
ln q

� 1,

and since it was shown by Robin in [12] that ω(q) = O( ln q
ln ln q ), we conclude that lnϕ(q)

ln q → 1 as
desired. �

Showing that condition (ii) is satisfied for Λq is the content of Lemma 2.14 below. We proceed
toward its proof by establishing several lemmas. The following simple lemma basically says that
Λq is equidistributed on the circle.

Lemma 2.12. Let q be some integer and 0 � α � 1. Then,

|#
{

1 � � � αq : � ∈ (Z/qZ)×
}
− αϕ(q)| � 2ω(q),

where ω(q) is the number of distinct prime factors of q.
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Proof. Let p be a prime that divides q and set Up = {1 � � � αq : p|�}. We want to find
�αq� − | ∪pi

Upi
| where pi are the distinct primes that divide q.

Using inclusion exclusion, we get that

�αq� − | ∪p Up| = �αq� −
∑
i

|Upi
| +

∑
i<j

|Upi
∩ Upj

| + · · · + (−1)ω(q)| ∩i Upi
|

= �αq� −
∑
i

⌊
αq

pi

⌋
+
∑
i<j

⌊
αq

pipj

⌋
+ · · · + (−1)ω(q)

⌊
αq∏
i pi

⌋
.

On the other hand, using (2.9), we have that

αϕ(q) = αq

ω(n)∏
1

(1 − 1
pi

) = αq −
∑
i

αq

pi
+
∑
i<j

αq

pipj
+ · · · + (−1)ω(q) αq∏

i pi

so that

|αϕ(q) − (�αq� − | ∪p Up|)| �
ω(q)∑
k=0

(
ω(q)
k

)
= 2ω(q). �

The following lemma is the heart of the argument yielding the validity of condition (ii) and,
in fact, establishes a much stronger non-escape of mass than the one we need, namely it shows
that there is no escape of mass for any sequence of measures of the form a(−tq)∗μq where
q → ∞ and tq is allowed to vary almost without constraint in the interval [0, ln q]; namely it is
allowed to vary in [0, ln q − 2ω(q)].

Lemma 2.13 (No escape of mass). Fix some q ∈ N, M > 1 and 0 � t � ln q − 2ω(q). Then∣∣{p ∈ (Z/qZ)× : Γup/qa (t) ∈ X�M
}∣∣ � 4

M2
ϕ (q) .

Equivalently, a(−t)∗μq(X�M ) < 4
M2 .

Proof. We say that p is bad if Γup/qa(t) ∈ X�M
2 . Thus, p is bad if and only if there exists

a vector

vp (m,n, t) = (m,n)
(

1 p
q

0 1

)(
e−t/2 0

0 et/2

)
=
(
me−t/2,

(
n + m

p

q

)
et/2

)
such that

||vp (m,n, t) ||2 = m2e−t +
(
n + m

p

q

)2

et � 1
M2

, (m,n) �= (0, 0) .

In particular, this implies (n + mp
q )2et � 1

M2 and m � et/2

M . We may also assume m � 0 and,
in fact, m �= 0, since otherwise (n + mp

q )2et = n2et � n2 � 1 > 1
M2 using the assumption that

t � 0. Let us say that p is bad for m ∈ [1, et/2

M ] if there exists n such that |n + mp
q | � 1

et/2M
. We

will bound the number of bad integers p by bounding the number of bad p for each m ∈ [1, et/2

M ].
Given such m and bad p, we can find n such that |n + mp

q | � 1
et/2M

or equivalently
|nq + mp| � q

et/2M
. Letting dm = gcd(q,m) and writing q = q̃dm, m = m̃dm, we get that

|q̃n + m̃p| � q̃

et/2M
. (2.10)
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We will bound the number of integers p solving (2.10) by considering its meaning in the
ring Z/q̃Z. Note that m � et/2

M �
√
q

M so that q̃ = q
(q,m) � M

√
q > 1. This allows us to con-

sider the group (Z/q̃Z)× and the natural surjective homomorphism π : (Z/qZ)× → (Z/q̃Z)×.
Furthermore, since m̃, p ∈ (Z/q̃Z)× the meaning of the inequality (2.10) may be interpreted in
(Z/q̃Z)×. Namely, if we let Ω = {[a] ∈ (Z/q̃Z)× : |a| � q̃

et/2M
}, then the bad p for m are exactly

π−1(m̃−1Ω), hence there are at most |Ω| · |ker(π)| such p. Since π is surjective, we obtain that
|ker(π)| = ϕ(q)

ϕ(q̃) and by Lemma 2.12, we get that |Ω| � 2( 1
et/2M

ϕ(q̃) + 2ω(q̃)).
We claim that 2ω(q̃) � 1

et/2M
ϕ(q̃). Assuming this claim, the total number of bad integers

p (for a fixed m) is at most |Ω| · |ker(π)| � 4
et/2M

ϕ(q). Since there are � et/2

M � such m, a

union bound shows that the number of bad p is at most 4
et/2M

ϕ(q) e
t/2

M = 4
M2ϕ(q). Thus, to

complete the proof, we need only to show 2ω(q̃)

ϕ(q̃) � 1
et/2M

. From (2.9), it follows that for any
k, ϕ(k) � k(1

2 )ω(k) and so we deduce that

2ω( q
dm

)

ϕ
(

q
dm

) � 2ω( q
dm

)

( 1
2 )ω( q

dm
) q
dm

=
4ω( q

dm
)

q
dm � e2ω( q

dm
)

q

et/2

M

� exp
(
t + 2ω

(
q

dm

)
− ln q

)
1

et/2M
� 1

et/2M
,

where the last inequality follows from the fact that ω(q) � ω( q
dm

), and our assumption that
t � ln q − 2ω(q) so that t + 2ω( q

m ) − ln q � 0. �

We now conclude the validity of condition (ii) by averaging the result of Lemma 2.13 over
t ∈ [0, ln q].

Lemma 2.14. For any q > 1 and any M > 1, we have

μ�ln q�
q

(
X<M

)
� 1 −

(
4

M2
+ O

(
1

ln ln q

))
.

Proof. Using the previous lemma, we get that

μ�ln q�
q

(
X�M

)
=

1
�ln q�

�ln q�−1∑
k=0

a(−k)∗μq(X�M )

� 1
�ln q�

�ln q�−2ω(q)−1∑
k=0

a(−k)∗μq(X�M ) +
2ω (q)
�ln q� � 4

M2
+

2ω (q)
�ln q� .

Finally, it was shown by Robin in [12] that ω(q) = O( ln q
ln ln q ), thus completing the proof. �

Proof of Theorem 1.5. By Lemmas 2.11 and 2.14, the two conditions (i) and (ii) of
Theorem 1.7 are satisfied for Λq = (Z/qZ)× yielding the result. �

2.4. Upgrading the main result

Theorem 1.5 tells us that the averages δ
[0,2 ln(q)]
Λq

where Λq = (Z/qZ)× converge to the Haar
measure. The ergodicity of the Haar measure allows us to automatically upgrade this result to
subsets of (Z/qZ)× of positive proportion.
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Theorem 2.15. Let 1 � α > 0 and choose Wq ⊆ (Z/qZ)× such that |Wq| � αϕ(q) for every

q. Then δ
[0,2 ln q]
Wq

w∗
−→ μHaar.

Proof. Let μ be an accumulation point of δ
[0,2 ln(qi)]
Wqi

for some subsequence qi (which is

necessarily A-invariant). Going down to a subsequence, we may assume |Wqi |
ϕ(qi)

→ α0 � α > 0

and δ
[0,2 ln(qi)
Λqi

\Wqi
→ μ′ converge. We now have that

μ
q
[0,2 ln(q)]
i

=
|Wqi |
ϕ (qi)

· δ[0,2 ln(qi)]
Wqi

+
|Λqi\Wqi |
ϕ (qi)

· δ[0,2 ln(qi)]
Λqi

\Wqi
,

and taking the limit, we get that

μHaar = α0μ + (1 − α0)μ′.

This is a convex combination of A-invariant probability measures with positive α0. The
ergodicity of μHaar implies that it is extreme point in the set of A-invariant probability
measures, hence we conclude that μ = μHaar. As this is true for any convergent subsequence
of δ[0,2 ln q]

Wq
, we conclude that it must converge to the Haar measure. �

Once we have the convergence result for any positive proportion sets, we also automatically
get a second upgrade and show that almost all choices of sequence δ

[0,ln(qi)]
pi/qi

converge.

Proof of Corollary 1.6. Let F = {f1, f2, . . .} be a countable dense family of continuous
functions in Cc(X2). For each n, q ∈ N, define

Wq,n =
{
p ∈ (Z/qZ)× : max

1�i�n

∣∣∣(δ[0,2 ln(q)]
p/q − μHaar

)
(fi)

∣∣∣ < 1
n

}
.

We claim that limq→∞
|Wq,n|
ϕ(q) = 1 for any fixed n. Otherwise, we can find some 1 � i � n ,ε ∈

{±1} and α > 0 such that the set

Vq =
{
p ∈ (Z/qZ)× : ε

(
δ
[0,2 ln(q)]
p/q − μHaar

)
(fi) �

1
n

}

satisfies
|Vqj

|
ϕ(qj)

� α for some subsequence qj . By Theorem 2.15, we obtain that δ
[0,2 ln(qj)]
Vqj

w∗
−→

μHaar, while ε(δ[0,2 ln(qj)]
Vqj

− μHaar)(fi) � 1
n for all j, contradiction (note that i, n are fixed).

We conclude that for any n, there exists qn such that for any q � qn, |Wq,n|
ϕ(q) � 1 − 1/n.

Without loss of generality, we may assume that qn is strictly monotone. We then define for any
q, nq = max {n : q � qn}. It then follows that Wq := Wq,nq

satisfies that nq → ∞ and Wq

ϕ(q) → 1

as q → ∞. We are left to show δ
[0,2 ln(q)]
pq/q

w∗
−→ μHaar for any choice of sequence pq ∈ Wq. By the

definition of Wq, for any fixed i, we have that δ
[0,2 ln(q)]
pq/q

(fi) → μHaar(fi), and since F is dense

in Cc(X2), this claim holds for any f ∈ Cc(X2), or in other words, δ[0,2 ln(q)]
pq/q

w∗
−→ μHaar. �

3. Equidistribution over the adeles

In this section, we prove Theorem 1.11 which is an enhancement of Theorem 1.5. We establish
this equidistribution statement in the adelic space XA := PGL2(Q)\PGL2(A) which we refer
to as the adelic extension of XR := X2.
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We shall start in Subsection 3.1 with some general results about locally finite measures and
their pushforwards. In particular, we shall prove a ‘compactness’ criterion that roughly states
that if the pushforward of a sequence of locally finite measures converges to a probability
measure, then it has a subsequence that converges to a probability measure.

In Subsection 3.2, we prove that if μ is an A-invariant lift to XA of the Haar measure on XR,
and satisfies an extra uniformity condition over the finite primes (see Theorem 3.7 for precise
definition), then it must be the Haar measure on XA.

Finally, in Subsection 3.3, we show that the limit of translates of the orbit measure μx̃0AA

satisfies these condition, thus proving Theorem 1.11.

3.1. Locally finite measures

In this section, all the spaces are locally compact second countable Hausdorff spaces. A measure
on a space Z is called locally finite if every point in Z has a neighborhood with finite measure.
Since Z is locally compact, this is equivalent to saying that every compact set has a finite
measure. We denote the space of locally finite measures by M(Z) and the space of homothety
classes of such (non-zero) measure by PM(Z). Recall that we say that [νi] → [ν] for non-zero

measures νi, ν ∈ M(Z) if there exist scalars ci > 0 such that ciμi |K w∗
−→ ν |K for any compact

subset K ⊆ Z.
Given two spaces X,Y and a continuous proper map π : X → Y , we obtain a map M(X) →

M(Y ) and its homothethy counterpart PM(X) → PM(Y ), both of which we shall denote
by π∗. We will be interested in lifting convergent sequences from PM(Y ) to PM(X). The
next theorem is a type of compactness criterion which assures us that we can lift at least a
convergent subsequence. Moreover, if we can show that the limit measure on Y has a unique
preimage measure on X, then the convergence in Y will imply a convergence in X.

Theorem 3.1. Let π : X → Y be a continuous proper map and let νi ∈ M(X) and
ν̃i = π∗(νi) ∈ M(Y ). If [ν̃i] → [ν̃] for some probability measure ν̃ on Y , then [νik ] → [ν] for
some subsequence ik and a probability measure ν on X such that π∗(ν) = ν̃.

Proof. Multiplying νi by suitable scalars, we may assume that ν̃i |K w∗
−→ ν̃ |K for every

compact K ⊆ Y . It then follows that νi,K := νi |π−1(K) are finite with uniform bound, since
νi,K(X) = ν̃i(K) → ν̃(K) � 1. Choose a sequence of compact sets Kj ↗ Y such that any
compact K ⊆ Y is contained in some Kj for some j, which implies the same conditions on
π−1(Kj). Applying the Banach–Alaoglu theorem, we can find a subsequence ik such that
νik,Kj

converges as k → ∞ for every j, which implies νik → ν for some ν ∈ M(X). It then
follows that π∗(ν) = ν̃, and hence ν must be a probability measure. �

3.2. Lifts of the Haar measure

For the rest of this section, we fix the following notations. For a set S ⊆ P, where P is the set
of primes in N, we write

GS := PGL2(R) ×∏′
p∈S PGL2(Qp),

ΓS := PGL2(Z[S−1]), Z
[
S−1

]
:= Z

[
1
p

: p ∈ S

]
,

where
∏′

p denotes the restricted product with respect to PGL2(Zp) (which is the standard
product if S is finite). Note that ΓS is embedded as a lattice in GS via the diagonal map
γ �→ (γ, γ, . . .), and we shall denote XS := ΓS\GS . In case that S = P or S = ∅, we will
sometimes use the subscript A (respectively, R) instead, and we remark that Z[P−1] := Q

(respectively, Z[∅−1] := Z). We denote by μS,Haar the Haar probability measure on XS .
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We will denote by AS the full diagonal subgroup in GS . Note that A is still reserved to the
diagonal group with positive entries, namely the matrices {(e−t 0

0 1)} considered as a subgroup

of PGL2(R), while AR = {(±e−t 0
0 1)}. For a ring R (usually R,Z,Qp or Zp), we will write

UR = {ur = (1 r

0 1) : r ∈ R} considered as a subgroup in the suitable coordinate of GS when
S contains the corresponding place.

When S ⊆ S′, there is a natural projection XS′ → XS defined as follows. Let

HS := PSL2 (R) ×∏
p∈S PGL2(Zp) � GS ,

H ′
S := PSL2 (R) ×∏

p∈S PSL2(Zp) � HS .

Fixing S ⊆ P, it is not hard to show that HS acts transitively on XS by using the fact that
Qp = Zp + Z[ 1p ], thus leading to the identification XS

∼= PSL2(Z)\HS . This induces the natural
projections

πS′
S : XS′ ∼= PSL2 (Z) \HS′ → PSL2 (Z) \HS

∼= XS ∀S ⊆ S′ ⊆ P.

For any S, we have a PSL2(R)-right action on XS (and the induced A-action), which
commutes with the projections above. Moreover, these projections are easily seen to be proper
since the only non-compact part of HS is SL2(R). Thus, we can apply the results from the
previous subsection.

The main goal of this section is to lift the equidistribution result on XR from § 2 to
an equidistribution result on XA. We begin by noting that there is a unique GS-invariant
(respectively, HS) probability measure on XS , so in order to show that a measure is
GS-invariant, it is enough to show that it is HS-invariant.

In this subsection, we show that for S ⊆ P finite, an A-invariant lift of μR,Haar to XS is
automatically H ′

S-invariant. The main ideas are to first use a maximal entropy argument in
order to show that the lift must be PSL2(R)-invariant, and then show that PSL2(R)-invariant
measures on XS are actually H ′

S-invariant (since we also have PSL2(R) ‘invariance’). We are
then left to show invariance under H ′

S\HS , and for that we give the following definition.

Definition 3.2. For S ⊆ P finite let detS : HS → ∏
p∈S Z×

p /Z
×2
p be the homomorphism

induced from the determinant function det : PGL2(Zp) → Z×
p /Z

×2
p .

As the kernel of this map is exactly H ′
S which contains PSL2(Z), for any S ⊆ S′ (including

infinite S′), we use the same notation for the map detS : XS′ → XS → H ′
S\HS .

Remark 3.3. Note that for finite S ⊆ P, the quotient H ′
S\HS is a finite group. Indeed, for

each odd prime p, we have that Z×
p /Z

×2
p

∼= (Z/pZ)×/(Z/pZ)×2 and for p = 2, it is isomorphic
to (Z/8Z)×. We conclude, in particular, that H ′

S is a unimodular finite index normal subgroup
of HS .

Once we show that these two invariance conditions (the projection to the infinite part XR

and to the finite part H ′
S\HS) imply that the lift is the uniform Haar measure on XS for S

finite, we use the structure of restricted products in order to extend this result to infinite S.
Before considering A-invariant measures, we show how to combine right PSL2(R)-invariance

on XS together with the ‘left PSL2(Z)-invariance’ arising from the quotient structure.

Lemma 3.4. Let H � G be a unimodular subgroup and assume that either

(1) G = H ×N , or
(2) H is a finite index measurable normal subgroup of G.

Then any left H-invariant measure is also right H-invariant and vice versa.
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Proof. Assume first condition (1) and let μ be a left H-invariant measure on G. Con-
sider the natural product map Cc(H) ⊗ Cc(N) → Cc(H ×N) defined by (f1 ⊗ f2)(g1, g2) =
f1(g1)f2(g2). Using the Stone Weierstrass theorem, we obtain that it has a dense image (in
the sup norm); hence, it is enough to show μ(Rg(ψ1 ⊗ ψ2)) = μ(ψ1 ⊗ ψ2) for any ψ1 ∈ Cc(H),
ψ2 ∈ Cc(N) where Rg (and later on Lg) is the right multiplication by g (respectively left).

If h ∈ H, then μ(Lh(ψ1 ⊗ ψ2)) = μ((Lhψ1) ⊗ ψ2) so by the left H-invariance of μ, we learn
that ψ1 �→ μ(ψ1 ⊗ ψ2) is left H-invariant. The unimodularity of H implies that this map and
therefore μ are right H-invariant as well.

Assume now condition (2), namely that [G : H] is finite and we let {g1, . . . , gk} be left coset
representative of H in G. Let μ be a left H-invariant measure on G. For each i, the measure Ω �→
μi(Ωgi) for measurable Ω ⊆ H is a left H-invariant measure on H; thus, from unimodularity of
H, it must also be right H-invariant. Using the normality of H in G and this right invariance,
we get that for any h ∈ H and Ω ⊆ H, we have that μ(Ωgi) = μ(Ω(gihg−1

i )gi) = μ(Ωgih). As
this is true for all i, it follows that μ is right H-invariant as well. �

Lemma 3.5. Let S ⊆ P be finite and let μS be an PSL2(R)-invariant probability measure
on XS . Then μS is H ′

S-invariant.

Proof. Denote by PSL(d)
2 (Z) the diagonal image of PSL2(Z) in HS . The space XS is a

quotient (from the left) by PSL(d)
2 (Z) embedded diagonally, and we consider measures which

are invariant (from the right) by PSL2(R). We begin with the claim these groups together

generate < PSL(d)
2 (Z),PSL2(R) > = H ′

S . Indeed, it is well known that any element in SL2(Zp)
is generated by UZp

, U tr
Zp

; hence, this claim follows from the fact that the diagonal embedding
of UZ

∼= Z is dense in
∏

p∈S Zp
∼= ∏

p∈S UZ (and similarly for the transpose).
Let μ̃S be the lift of μS to HS , that is, for sets F inside the fundamenal domain, we set

μ̃S(F ) = μS(PSL(d)
2 (Z)F ), and extend this to a left PSL(d)

2 (Z)-invariant measure on HS . Since
HS = PSL2(R) ×∏

p∈S PGL2(Zp) and PSL2(R) is unimodular, we can apply Lemma 3.4 to

conclude that μ̃S is left PSL2(R) invariant as well, and therefore left < PSL(d)
2 (Z),PSL2(R) > =

H ′
S-invariant. Since H ′

S is a finite index normal unimodular subgroup of HS , applying
Lemma 3.4 again, we conclude that μ̃S and therefore μS are right H ′

S-invariant which completes
the proof. �

We can now prove that invariance of the projections of the measure to the finite and infinite
places implies the invariance over the adeles. In the following, we consider the actions by
T = (e

−1/2 0

0 e1/2) and U = UR on the spaces XS via their images in PSL2(R).

Theorem 3.6 (see [4, Theorems 7.6 and 7.9]). Fix some finite set S ⊆ P and let λ be a
T -invariant probability measure on XS . Then hλ(T ) � 1 with equality if and only if λ is U -
invariant. Similarly, hλ(T−1) � 1 with equality if and only if λ is U tr-invariant (where U tr is
the transpose of U).

Theorem 3.7. Let S ⊆ P be finite and let μS be an A-invariant probability measure on
XS , such that (πS

R
)∗μS = μR,Haar. Assume further that the projection (detS)∗μS to the finite

space H ′
S\HS is the uniform measure. Then μS = μS,Haar.

Proof. Since the entropy only decreases in a factor and the Haar measure is U -invariant, an
application of Theorem 3.6 shows 1 � hμS

(T ) � hμR,Haar
(T ) = 1. It follows that hμS

(T ) = 1,
and hence μS is also U invariant. Repeating the process with T−1, we get that μS is 〈U,U tr〉 =
PSL2(R)-invariant. It now follows from Lemma 3.5 that μS is H ′

S-invariant.
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Let g1, . . . , gn be coset representatives of H ′
S in HS and let μi(Ω) := μS(Ωgi) for 1 � i � n

and Ω ⊆ X ′
S := PSL2(Z)\H ′

S . All of these measures are H ′
S-invariant since μS is H ′

S-invariant
and H ′

S is normal in HS . Letting μ′ be the H ′
S-invariant probability measure on X ′

S , we get
that μi = ciμ

′ for some ci � 0. Any Ω ⊆ XS can be written as Ω =
⊔

Ωigi with Ωi ⊆ X ′
S ,

and then μS(Ω) =
∑

ciμ
′(Ωi). The projection of μS to H ′

S\HS is exactly the probability
vector (c1, . . . , cn), hence by assumption ci = 1

n for each i. Given g ∈ HS , we have that
Ωg =

⊔
Ωigig =

⊔
Ωihigj(i) where hi ∈ H ′

S and i �→ j(i) is a permutation. It then follows that
μS(Ωg) =

∑
1
nμ

′(Ωihi) =
∑

1
nμ

′(Ωi) = μS(Ω), so we conclude that μS is HS-invariant. �

Finally, we extend this result to the adeles.

Theorem 3.8. Let S ⊆ P be infinite and let μS be an A-invariant probability measure on
XS , such that

(1) (πS
R
)∗μS = μR,Haar, and

(2) for any S′ ⊆ S finite, the measure (detS′)∗μS is uniform.

Then μS = μS,Haar.

Proof. For each finite S′ ⊆ S, we can pull back the functions in Cc(XS′) to Cc(XS) and the
union of these sets over the finite S′ spans a dense subset of Cc(XS). Hence, it is enough to
prove that for any such finite set S′, f ∈ Cc(XS′) and g ∈ HS , we have that μS(g(f ◦ πS

S′)) =
μS(f ◦ πS

S′). The function f ◦ πS
S′ is already invariant under g ∈ GS which are the identity in

the S′ ∪ {∞} places, so it is enough to prove this for g ∈ GS′ , and then g(f ◦ πS
S′) = g(f) ◦ πS

S′ .
The proof is completed by noting that the measure μS′ = (πS

S′)∗(μS) satisfies the conditions
of Theorem 3.7, so it is the Haar measure on XS′ and hence invariant under g ∈ GS′ . �

3.3. Lifts of orbit measures

By Theorem 1.5, we know that the averages of the measures δ
[0,2 ln q]
p/q converge to the Haar

measure on XR = X2 = PGL2(Z)\PGL2(R) as q → ∞. In this section, we show how to extend
these measures to locally finite AR-invariant measures on XR, and relate their averages to
projections of single orbit measures in XA.

Definition 3.9. Given a homogeneous space Z = Γ0\G0, a unimodular group H < G0 and
a closed orbit zH, we denote by μzH the orbit measure, namely the pushforward of a restriction
of a fixed Haar measure on H to a fundamental domain of stabH(z) by the orbit map h �→ zh.
The fact that the orbit is closed and the unimodularity of H imply that the orbit measure is
locally finite and H-invariant. Moreover, up to scaling this is the unique H-invariant locally
finite measure supported on zH.

For an integer n, we write μn :=
∑

m∈(Z/nZ)× δm/n, μm/nA := μx0um/nA and
μnA :=

∑
m∈(Z/nZ)× μm/nA.

We note that 1
2 lnnμm/nA − δ

[0,2 lnn]
m/n is a positive measure which is supported on the part

of the orbit x0um/nA which goes directly to the cusp. Hence, if f is continuous with compact
support, we expect that its integral with respect to this difference will be small. This leads us
to the following lemma which together with Theorem 1.5 implies Theorem 1.10 as a corollary.

Lemma 3.10. For any f ∈ Cc(XR), we have

lim
n→∞

∣∣∣∣
[

1
2 ln(n)

μnA − μ[0,2 lnn]
n

]
(f)

∣∣∣∣ = 0.
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Proof. Since f is compactly supported, supp(f) ⊆ X�M
2 for some M > 0. For any

m ∈ (Z/nZ)×, we have that Γum/na(t) = Γ(e
−t/2 m

n
et/2

0 et/2 ) ∈ X>M
2 for all t /∈ [−2 ln(M),

2 ln(n) + 2 ln(M)] so that f is zero there, implying∣∣∣∣
[

1
2 ln(n)

μnA − μ[0,2 lnn]
n

]
(f)

∣∣∣∣ � 1
2 lnn

1
ϕ (n)

∑
(m,n)=1

||f ||∞ · 4 ln (M)

=
2 ln (M)

lnn
||f ||∞ n→∞−→ 0.

�

Proof of Theorem 1.10. The proof that μnA → μHaar follows from Lemma 3.10 above and
Theorem 1.5. �

We continue to lift these measures to the adeles.

Definition 3.11. We set GA,f =
∏′

p∈P
PGL2(Qp) and consider it as a subgroup of GA.

Similarly, we let AA,f = AA ∩GA,f .

We now turn to the proof of Theorem 1.11. The strategy will be as follows. Similarly to the
real case, if x̃0 = ΓA ∈ XA, then x̃0AA is a closed orbit and therefore μx̃0AA

is a locally finite
A-invariant measure and this remains true if we push this measure by elements from GA,f .
Thus, if gi ∈ GA,f is a sequence satisfying that the projections of giμx̃0AA

to XR are μniA with
ni → ∞, then we conclude that the projection of the limit measure to the real place is the
uniform Haar measure. The uniformity in the finite places, that is, under the projections detS
for S-finite will follow from the fact the measure on AA is uniform on the finite places.

Since μx̃0AA
is AA-invariant, a partial limit of (gi)∗μx̃0AA

will not change if we multiply the gi
by elements of AA from the right. Similarly, the limit will be the uniform measure if and only
if the limit of (ki · gi)∗μx̃0AA

is the uniform measure given a sequence ki ∈ GA with compact
closure. Thus, for a choice of K =

∏
PGL2(Zp), we can consider the gi in K\GA,f/AA. The

next lemma shows that modulo these groups, the gi have a very simple presentation.

Definition 3.12. For m ∈ (Z/nZ)× let ūm/n := (um/n, um/n, . . .) ∈ GA,f .

Lemma 3.13. The group GA,f has a decomposition GA,f = KN ′AA,f where

K :=
∏
p∈P

PGL2(Zp)

N ′ := {ū1/n : n ∈ N}.

Moreover, a sequence gi = ū1/ni
in GA/AA diverges to infinity if and only if ni → ∞.

Proof. By the Iwasawa decomposition, modulo K from the left and AA,f from the right,

any element g ∈ GA,f can be expressed as (gp1 , gp2 , . . .) where gp = (
1

mp

p
lp

0 1
), (mp, p

lp) = 1,

0 � mp < plp for every p, and lp = mp = 0 for almost every p. Moreover, by conjugating gp
by a matrix (kp 0

0 1) ∈ AZp
∩ PGL2(Zp), kp ∈ Z×

p , we can take mp to be any element in Z×
p . Let

S be the finite set of primes for which gp /∈ PGL2(Zp) (that is, lp � 1) and let n =
∏

plp ∈ N.
Choosing mp = plp

n , we get that gp = u1/n for all p, thus proving the presentation as KN ′AA,f .
The second claim follows from the fact that K is compact. �



168 OFIR DAVID AND URI SHAPIRA

To prove Theorem 1.11, we are left to show that the limit of (πA

R
)∗(ū1/ni

μx̃0AA
) satisfies the

conditions of Theorem 3.8.

Proof of Theorem 1.11. Let n ∈ N and consider the measure ū1/nμx̃0AA
. Since stabAA

(x̃0) =
AA ∩ PGL2(Q) are the diagonal rational matrices, we obtain that its fundamental domain in
AA is

A0
A

:=
{((

e−t 0
0 1

)
,

(
vp 0
0 1

)
, . . .

)
∈ GL2 (A) : t ∈ R, vp ∈ Z×

p

}
� AA.

It follows that μx̃0AA
= μx̃0A0

A

where the map a �→ x̃0a for a ∈ A0
A

is injective and proper.
Let N ∈ N such that n | N and define ψN : A0

A
→ (Z/NZ)× by

ψN : A0
A

ΔN−→
∏
p|N

Z×
p →

∏
p|N

(
Z/pki

i

)×
→ (Z/NZ)× ,

where ΔN is the product over p | N of the projections defined by (a 0
0 1) �→ a.

We claim that for a ∈ ψ−1
N (m),m ∈ (Z/NZ)×, we have that ūm′/naf ū−1/na

−1
f ∈ ∏

UZp

where af is the projection of a to the finite places and m′ is the projection of m to (Z/nZ)×.
Since (um′/n, ūm′/n) ∈ stabAA

(x̃0), it follows that

x̃0aū−1/n = x̃0(um′/na∞, Id, . . .) ·
∈∏

p UZp︷ ︸︸ ︷
ūm′/naf ū−1/na

−1
f af ,

and hence πA

R
(x̃0ψ

−1
N (m)ū−1/n) = x0um′/nA, namely, up to the projection mod n, the distinct

‘cosets’ of kerψN in A0
A

are mapped to the distinct A-orbits in μnA.
Let a = (a∞, ap1 , ap2 , . . .) ∈ ψ−1

N (m), so that ap = (vp 0
0 1) and vp ≡pkp m where N =

∏
pkp .

Note that this implies m′−vp

n ∈ Zp for all p, and then computing the coordinate at the p place,
we get

um′/ngpu−1/ng
−1
p = u(m′−vp)/n ∈ UZp

,

which proves our claim.
As ϕ−1

N (m) has 1
ϕ(N) volume inside the finite places of A0

A
, we conclude that

(πA

R
)∗(ū1/nμx̃0AA

) =
1

ϕ(N)

∑
m∈(Z/NZ)×

(πA

R
)∗(ū1/nμx̃0ψ

−1
N (m)) =

1
ϕ(n)

∑
m′∈(Z/nZ)×

μm′/nA = μnA.

In particular, we get that any partial weak limit μA of 1
2 ln(n) (ū1/n)∗μx̃0AA

is a probability
measure such that πA

R
(μA) = μR,Haar.

Fix some finite S ⊆ P and suppose 8 ·∏p∈S p | N . Since the elements in UZp
have determinant

1, with a as above we get that

det
S

(x̃0aū−1/n) = (vp/Z×2
p : p ∈ S) = (m/Z×2

p : p ∈ S).

The map Ξ(m) = (m/Z×2
p : p ∈ S) for m ∈ (Z/NZ)× is a well-defined surjective homomor-

phism, and in particular for each σ ∈ ∏
p∈S Z×

p /Z
×2
p , we have that

|Ξ−1(σ)|
ϕ(N)

=
1

|∏p∈S Z×
p /Z

×2
p |

which depends only on S (and not on N). Letting μ̃σ,n := 1
2 ln(n) ū1/nμx̃0(Ξ◦ψN )−1(σ), then

similar to Lemma 3.10, we can restrict these measure in the infinite place to 0 � t � 2 ln(n) and
obtain probability measure μ̂σ,n which converge together with μ̃σ,n and to the same measure.
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Figure 1 (colour online). The arrows above represent two elements from C+. C− is
obtained by reflection through the y-axis of C+.

Moreover, the limit measures are probability measures since from the one hand, they are limit
of probability measures, and, on the other hand, their convex combination is

ū1/nμx̃0AA
=

1
|∏p∈S Z×

p /Z
×2
p |

∑
σ

μ̃σ,n,

which converge to a probability measure. This implies that the (detS)∗μA is the uniform
measure which is the second condition needed in Theorem 3.8.

As S ⊆ P was an arbitrary finite set, Theorem 3.8 implies that μA is the uniform measure
on XA. �

4. From the geodesic flow to the Gauss map

In this section, we translate the results obtained in § 2 to derive consequences on c.f.e. Using a
certain cross section for the flow a(t) on X2, we relate the partial-orbit measures δ

[0,2 ln(q)]
p/q to

the normalized counting measures of the finite orbit in [0,1] of p/q under the Gauss map.
We begin by recalling the connection between the c.f.e. and the geodesic flow on the quotient

of the hyperbolic plane H by the action of PSL2(Z) by Möbius transformations. We keep the
exposition brief and refer the reader to the the book of Einsiedler and Ward [7, Section 9.6]
for a detailed account. We bother to repeat many of the things written there as we are mostly
concerned with divergent geodesics which form a null set completely ignored in their discussion.

Identifying the unit tangent bundle T 1H of the hyperbolic plane with PSL2(R), we get that
every matrix g = (a b

c d) ∈ PSL2(R) defines a unique geodesic in H with endpoints

α (g) := lim
t→∞

(
a b
c d

)(
et/2 0
0 e−t/2

)
i = lim

t→∞
aeti + b

ceti + d
=

a

c
,

ω (g) := lim
t→∞

(
a b
c d

)(
e−t/2 0

0 et/2

)
i = lim

t→∞
a i
et + b

c i
et + d

=
b

d
.

Following Einsiedler and Ward (see Figure 1), we define

C+ = {g ∈ A · SO2 (R) : α(g) � −1 < 0 < ω(g) < 1} ,
C− = {g ∈ A · SO2 (R) : −1 < ω(g) < 0 < 1 � α(g)} ,
C = C+ ∪ C−,

considered as subsets of PSL2(R).
We leave the following simple proposition to the reader.
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Proposition 4.1. The projection π : PSL2(R) → X2 = PSL2(Z)\PSL2(R) restricts to a
homeomorphism on C.

Henceforth, we will identify C with π(C) and denote points there by g, ḡ, respectively. This
will allow us to speak of the start point α(ḡ) and end point ω(ḡ) for ḡ ∈ π(C). For such ḡ, we
will write sign(ḡ) ∈ {±1} according to the set C+ or C− for which g belongs to.

Our next goal is to show that the Gauss map is a factor of the first return map of the geodesic
flow on X2 to π(C). We start by defining a coordinate system on C. Consider the set

Ỹ =
{

(y, z) : y ∈ (0, 1) , 0 < z � 1
1 + y

}
× {±1} ⊆ R2 × {±1}

and note that the map from C to Ỹ given by

ḡ �→
(
|ω(ḡ)|, 1

|ω(ḡ) − α(ḡ)| , sign(ḡ)
)

is a homeomorphism. In what follows we will always use these coordinates.

Definition 4.2. Let ḡ ∈ π(C). We define the return time rC(ḡ) and the first return map
TC(ḡ) to be

rC(ḡ) := min {t > 0 : ḡ · a (t) ∈ π(C)}
TC(ḡ) := ḡ · a (rC(ḡ)) ∈ π(C).

This map is defined only when the forward orbit ḡ · a(t), t > 0 meets π(C). Otherwise, we will
write rC(ḡ) = ∞.

Remark 4.3. While it is not trivial, it is not difficult to show that the minimum in the
definition of rC(ḡ) is well defined (and not just the infinimum). Moreover, rC(ḡ) is uniformly
bounded from below, that is, infg∈π(C)rC(ḡ) > 0.

We now use the return time map in order to extend our coordinate system.

Lemma 4.4. Let Ŷ = {(ḡ, t) : 0 < t < rC(ḡ)} ⊆ Ỹ × R and set θ : (ḡ, t) �→ ḡ · a(t). If dm is
the restriction of the product measure on Ỹ × R to Ŷ , then κθ∗(dm) = μHaar for some κ > 0,
or equivalently for any f ∈ Cc(X2), we have that∫

X2

f (x) dμHaar = κ

∫
(y,z,ε)∈Y

(∫ rC(y,z,ε)

t=0

f ((y, z, ε) a (t)) dt

)
dμLeb. (4.1)

Proof. This follows from the proof in [7, Proposition 9.25]. �

The connection between the geodesic flow and the Gauss map is given in the following two
lemmas.

Lemma 4.5 [7, Lemma 9.22]. Under the identification π(C) � Ỹ , the first return map
(where it is defined) is given by

TC (y, z, ε) = (T (y) , y (1 − yz) ,−ε) ,

where T (x) = 1
x − ⌊

1
x

⌋
is the Gauss map.
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Lemma 4.6. Let 0 < x < 1
2 where x �= 1

n , n ∈ N. The first time that the orbit Γuxa(t), t ∈ R

meets π(C) is at the point (T (x), x,−1) for some t � 0. Similarly, for 1
2 < x < 1, x �= 1 − 1

n , the
first meeting is at (T (1 − x), 1 − x, 1). If x = p

q is rational, then the last time the orbit meets

π(C) is for some t � 2 ln(q). Finally, we have that T 2(x) = T (1 − x) for 1
2 < x < 1.

Proof. The proof of the statements involving the first meeting points is essentially the same
as the proof of [7, Lemma 9.22] and we leave it to the reader. For the statement involving
the last meeting time, we note that Γup/qa(2 ln(q)) = Γup′/q(

0 −1
1 0 ), where pp′ ≡q 1 which as a

point in H is in the standard fundamental domain which points directly up to the cusp; hence,
its forward orbit does not pass through π(C).

For the second result, let 0 < x < 1
2 , so that x = [0; a1, a2, a3, . . .] with a1 � 2. We claim that

y = [0; 1, a1 − 1, a2, a3, . . .] is equal to 1 − x. Indeed, the c.f.e. of y implies

y =
1

1 + 1
a1−1+T (x)

=
1

1 + 1
−1+1/x

= 1 − x.
�

The next step is to push measures on X2 to measures on [0,1] and we do it by lifting functions
on [0, 1] to functions on SL2(Z)\SL2(R). The idea is to define the function first on π(C) and
to thicken it along the A-orbits since π(C) has zero measure.

Definition 4.7. Let r∗ = 1
2 infg∈π(C)rC(g) > 0. For a function f : [0, 1] → R, we define

f̃ : X2 → R as follows:

f̃ (g) =

{
1
r∗
f(|ω (g0)|) g = g0a (t) s.t. g0 ∈ π(C) and 0 < t < r∗

0 else.

In general, given a probability measure μ on X2, we would like to define a measure ν on
[0,1] by setting ν(f) := μ(f̃) for any continuous function f . The problem is that μ(f̃) is not
well defined since f̃ is not continuous with compact support. Fortunately, when μ = δ

[0,R]
x is

any partial orbit measure, μ(f) is well defined and we obtain the following.

Definition 4.8. For a rational s = p
q ∈ Q in the reduced form, we denote by len(p/q) the

first integer i such that T i(p/q) = 0. We define the two measures:

νp/q =
1

len(p/q)

len(p/q)−1∑
i=0

δT i(p/q) ; ν̃p/q =
1

2 ln(q)

len(p/q)−1∑
i=0

δT i(p/q),

Lemma 4.9. For any p ∈ (Z/qZ)× with q > 2 and p �= 1, q − 1, for any f : [0, 1] → R, we

have that |δ[0,2 ln(q)]
p/q (f̃) − ν̃p/q(f)| < 2

ln(q) ||f ||∞

Proof. Let t1 < t2 < t3 < · · · < tn be the times in which the partial orbit Γup/qa(t),
t ∈ [0, 2 ln(q)] meets π(C) and set ḡi = (yi, zi, εi) ∈ π(C) to be the corresponding points. It
then follows that ∣∣∣∣∣δ[0,2 ln(q)]

p/q (f̃) − 1
2 ln(q)

n∑
1

f(yi)

∣∣∣∣∣ � 2
||f ||∞
2 ln(q)

.

By Lemma 4.5, we have that yi+1 = T i(y1) for all 1 � i � n− 1 and by Lemma 4.6, we have
that y1 is either T (pq ) when p

q < 1
2 or T (1 − p

q ) = T 2(pq ) when p
q > 1

2 , so in any case, the yi are
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in the T -orbit of p
q . Finally, Lemma 4.6 also tells us that yn is the last point in the T -orbit of

p
q , so we conclude that

∣∣∣δ[0,2 ln(q)]
p/q (f̃) − ν̃p/q(f)

∣∣∣ =

∣∣∣∣∣∣δ[0,2 ln(q)]
p/q (f̃) − 1

2 ln(q)

len(p/q)−1∑
0

f(T i

(
p

q

)
)

∣∣∣∣∣∣ � 2
ln(q)

||f ||∞. �

Remark 4.10. We note that while ν̃p/q appear ‘naturally’, they are not probability
measures. Once we show that such a sequence of measures converge to the probability measure
νGauss, we immediately get that their probability normalization, namely νp/q, also converges
to νGauss.

Lemma 4.11. Let pi ∈ (Z/qiZ)× such that δ
[0,2 ln(qi)]
pi/qi

w∗
−→ μHaar. Then ν̃pi/qi

w∗
−→

2 ln(2)κνGauss and therefore len(pi/qi)
2 ln(qi)

→ 2 ln(2)κ and νpi/qi
w∗
−→ νGauss.

Proof. Given a segment I ⊆ [0, 1] with endpoints 0 � a < b � 1, we have that χ̃I = 1
rχΩI

where

ΩI = {ḡ0a(t) ∈ X : ḡ0 ∈ π(C) , 0 < t < r∗, |ω(g0)| ∈ I}.
The boundary of this set is contained in F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5, where

F1 = π(C),

F2 = π(C)a(r∗),

F3 = {π(g)a(t) : g ∈ A · SO2(R), t ∈ [0, r∗], |ω(g)| ∈ {0, 1}} ,
F4 = {π(g)a(t) : g ∈ A · SO2(R), t ∈ [0, r∗], |α(g)| ∈ 1} ,
F5 = {π(g)a(t) : g ∈ A · SO2(R), t ∈ [0, r∗], |ω(g)| ∈ {a, b}} .

In any case, this is a null set for μHaar. Since δ
[0,2 ln(qi)]
pi/qi

w∗
−→ μHaar, for any measurable B with

boundary which is μHaar-null, we have δ
[0,2 ln(qi)]
pi/qi

(B) → μHaar(B) and, in particular,

δ
[0,2 ln(qi)]
pi/qi

(ΩI) → μHaar(ΩI) = κ

∫
(y,z,ε)∈Y

∫ rC(y,z,ε)

0

χΩI
dμLeb = 2r∗κ

∫ b

a

1
1 + s

ds.

Applying Lemma 4.9, we obtain that ν̃pi/qi(χI) → 2 ln(2)κνGauss(χI). This result can be
extended to any f ∈ C[0, 1] by noting that (1) each such f can be approximated by step
function and (2) the measures ν̃p/q are uniformly bounded (this follows from the fact that
len(p/q) � 2 log2(q)).

Now that we have that ν̃pi/qi
w∗
−→ 2 ln(2)κνGauss, evaluating at the constant function 1

produces len(pi/qi)
2 ln(qi)

→ 2 ln(2)κ which, in turn, implies νpi/qi = 2 ln(qi)
len(pi/qi)

ν̃pi/qi
w∗
−→ νGauss. �

Proof of Theorem 1.1. By Corollary 1.6, there exist sets Wq ⊆ (Z/qZ)× with

limq→∞
|Wq|
ϕ(q) = 1, such that for any choice of pq ∈ Wq, we have that δ

[0,2 ln(q)]
pq/q

w∗
−→ μHaar.

Without loss of generality, we may assume 1, q − 1 /∈ Wq (this assumption is not really
necessary as this follows automatically since δ

[0,2 ln(q)]
1/q , δ

[0,2 ln(q)]
1/q cannot converge to μHaar).

The computation κ = 1
2ζ(2) will be done in Theorem 4.12 below; hence, applying Lemma 4.11,

we obtain that len(pq/q)
2 ln(q) → ln(2)

ζ(2) and νpq/q
w∗
−→ νGauss for such sequences. �



EQUIDISTRIBUTION OF DIVERGENT ORBITS AND CONTINUED FRACTION 173

Finally, we compute the value of κ. One way of doing it is to note that we already know
that 1

ϕ(q)

∑
p∈(Z/qZ)×

len(p/q)
2 ln(q) → 2 ln(2)κ. This limit was computed by Heilbronn in [8] which

showed κ = 3
π2 = 1

2ζ(2) . A direct computation using the return time map is done in the following
theorem.

Theorem 4.12. In Equation (4.1), the constant κ is equal to 3
π2 = 1

2ζ(2) .

Proof. In order to find κ, we compute the return time map and then integrate over
f ≡ 1. Given the endpoints α < −1 < 0 < ω < 1 of g and writing as before y = εω, z = ε 1

ω−α ,

ε ∈ {±1}, then g = (1 − yz εy

−εz 1 )(e
t/2 0

0 e−t/2) for some t ∈ R. In particular, if g ∈ C± ⊆ A · SO2(R),
then the rows of g are orthogonal, so that t = − ln( zy (1 − yz))/2. Furthermore, setting
(y′, z′, ε′) = ( 1

y − � 1
y �, y(1 − yz),−ε), we obtain that(
−ε

⌊
1
y

⌋
1

−1 0

)(
1 − yz εy

−εz 1

)(
y 0
0 1

y

)
= −ε

(
1 − y′z′ ε′y′

−ε′z′ 1

)
.

We conclude that rC(y, z, ε) = −2 ln(y) − ln( zy (1 − yz))/2 + ln( z
′

y′ (1 − y′z′))/2. It then follows
that

1 = 2κ
∫ 1

0

∫ 1
1+y

0

(
−2 ln(y) − ln

(
z

y
(1 − yz)

)/
2 + ln

(
z′

y′
(1 − y′z′)

)/
2
)

dz · dy.

Since the map (y, z) �→ (y′, z′) is measure preserving, we conclude that 1 = −4κ
∫ 1

0
ln(y)
1+y dy =

4κπ2

12 , hence κ = 3
π2 = 1

2ζ(2) . �

We finish by giving the proof that for a fixed K, there are very few rationals p/q with
p ∈ (Z/qZ)× such that the coefficients in their c.f.e. are bounded by K.

Proof of Theorem 1.4. Fix some K > 1 and let

Λq,K =
{
p ∈ (Z/qZ)× : the entries of the c.f.e. of

p

q
are bounded by K

}
.

We first claim that there is some M = M(K) > 1 such that δ[0,2 ln(q)]
p/q is supported in X�M

2 for
any p ∈ Λq,K . We give here an elementary proof but the reader may benefit from reviewing
[7, Section 9.6] and try to establish this claim by herself. Let p

q = [0; a1, a2, . . . , an] with ai � K,
and assume SL2(R)up/qa(t) ∈ X>M for some 0 � t � 2 ln(q). Let 0̄ �= (m,n) ∈ Z2 such that

||(m,−n)up/qa(t)||∞ � 1
M , or equivalently |m| � et/2

M and |mp
q − n| � 1

Met/2 . Without loss of

generality, we may assume 1 � m � et/2

M � q
M . Letting pi

qi
= [0; a1, . . . , ai] be the convergents of

p
q , we have the recursion condition qi+1 = qiai+1 + qi−1 � (ai+1 + 1)qi. Since qn = q, we obtain
that qn−1 � q

an+1 � q
K+1 , so M > K + 1 implies m < qn−1.

Choose k such that qk−1 � m < qk � qn−1 �= q. Then by the optimality of convergents
[7, Proposition 3.3], we get that |pq − pk

qk
| < |pq − n

m | � 1
Mmet/2 . Furthermore, the convergents

satisfy 1
2qk+1qk

< |pq − pk

qk
| [7, Exercise 3.1.5], and hence

Met/2

2
<

qkqk+1

m
�

(ak+1 + 1)(ak + 1)2q2
k−1

m
� (K + 1)3m � (K + 1)3

et/2

M
.

It follows that M2 < 2(K + 1)3, and therefore the support of δ[0,2 ln(q)]
p/q must be contained in

X�2(K+1)2 .
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By the claim that we just proved, the probability measures δ[0,2 ln(q)]
Λq,K

are all supported in the

compact set X�2(K+1)2 , so, in particular, they do not exhibit escape of mass. If we also knew
that ln |Λq,K |

ln(q) → 1, then applying Theorem 1.7, we conclude that δ
[0,2 ln(q)]
Λq,K

converges to the

Haar probability measure, but the limit must also be supported on X�2(K+1)2 , contradiction.
It follows that lim sup ln |Λq,K |

ln(q) < 1 or equivalently |Λq,K | = o(q1−ε) for some ε > 0. �

Appendix. The proof of Lemma 2.9

Before we give the proof, we need some results about hyperbolic balls. Recall from Definition 2.6
that for H � SL2(R), we define the H-balls BH

r = {I + W ∈ H : ||W ||∞ < r}. In particular,
we have

BU+

r = {I + αE1,2 : |α| < r}

BU−A
r = {I + W ∈ SL2 (R) : W1,2 = 0, |Wi,j | < r} .

We further write Bη,N = BU+

ηe−NBU−A
η , Bη := Bη,0 and a = (e

−1/2 0

0 e1/2) (so that aBU+

r a−1 =

BU+

r/e).

Lemma A.1. Let H � G be any subgroup. We have the following.

(1) (BH
K )−1 = BH

K .
(2) BH

K1
BH

K2
⊆ BH

2(K1+K2)
whenever K1,K2 < 1.

(3) Suppose r+, r− < 1
4 . Then BU−A

r− BU+

r+ ⊆ BU+

2r+BU−A
2r− .

(4) Suppose r+, r− < 1
4 . Then gBU+

r+ g−1 ∈ BU+

2r+BU−A
6r− for every g ∈ BU−A

r− .
(5) Suppose r+, r− < 1

16 and x, y ∈ Γ\G. Then

y ∈ xBU+

r+ BU−A
r− ⇒ xBU+

r+ BU−A
r− ⊆ yBU+

8r+BU−A
6r− .

Proof. (1) Follows from the fact that (a b

c d)−1 = ( d −b

−c a ) for matrices of determinant 1.
(2) Follows from the identity (I + W1)(I + W2) = I + (W1 + W2) + W1W2 and the fact that

||W1W2||∞ � 2||W1||∞||W2||∞.
(3) Suppose |u| , |v| , |w| < r− and |x| < r+. Then(

1 + u 0
v 1 + w

)(
1 x
0 1

)
=
(

1 x(1+u)
1+w+vx

0 1

)(
1 + u− x(1+u)

1+w+vxv 0
v 1 + w + vx

)
,

which is in BU+

2r+BU−A
2r− .

(4) Using the previous parts, we get that

gBU+

r+ g−1 ⊆ BU−A
r− BU+

r+ BU−A
r− ⊆ BU+

2r+BU−A
2r− BU−A

r− ⊆ BU+

2r+BU−A
6r− .

(5) Using the previous parts, y = xh+h− with h+ ∈ BU+

r+ and h− ∈ BU−A
r− , we have that

xBU+

r+ BU−A
r− = y

(
h−)−1 (

h+
)−1

BU+

r+ BU−A
r− ⊆ yBU−A

r− BU+

4r+BU−A
r−

⊆ yBU+

8r+BU−A
2r− BU−A

r− ⊆ yBU+

8r+BU−A
6r− . �

Lemma A.2. There is some constant C such that for all 0 < r1, r2 small enough, x ∈ X2

and Y ⊆ xBU+

r1 BU−A
r2 , there are y1, . . . , yC ∈ Y such that Y ⊆ ⋃

yiB
U+

r1/e
BU−A

r2/e
.
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Proof. We first prove a similar claim in SL2(R), that there exists a constant C1 such
that for all 0 < r1, r2 small enough and R � 1, we can find x1, . . . , xC1R3 ∈ SL2(R) such
that BU+

r1 BU−A
r2 ⊆ ⋃

xiB
U+

r1/R
BU−A

r2/R
. Since U+ ∼= R, given R′ � 1, we can find O(R′) elements

gi ∈ BU+

r1 such that BU+

r1 ⊆ ⋃
giB

U+

r1/R′ , and similarly, we can find O((R′)2) elements hj ∈ BU−A
2r2

such that BU−
r2 ⊆ ⋃

hjB
U−A
r2/R′ . Applying Lemma A.1, we obtain that

BU+

r1 BU−
r2 ⊆

⋃
i,j

giB
U+

r1/R′hjB
U−A
r2/R′ =

⋃
i,j

gihj

(
h−1
j BU+

r1/R′hj

)
BU−A

r2/R′

⊆
⋃
i,j

gihjB
U+

2r1/R′BU−A
6r2/R′BU−A

r2/R′ ⊆
⋃
i,j

gihjB
U+

2r1/R′BU−A
14r2/R′ .

Choosing R′ = 14R finishes the claim.
We now transfer this result to X2. Let r1, r2 > 0 small enough, x ∈ X2 and Y ⊆ xBU+

r1 BU−A
r2 .

Setting R = 8e, we can find O(R3) = O(1) many xi ∈ SL2(R) such that xBU+

r1 BU−
r2 ⊆ ⋃

x ·
xiB

U+

r1/R
BU−A

r2/R
. Choose yi such that yi ∈ Y ∩ x · xiB

U+

r1/R
BU−A

r2/R
if this set is not empty and

otherwise choose some yi ∈ Y arbitrarily. Since yi ∈ x · xiB
U+

r1/R
BU−A

r2/R
, applying Lemma A.1

(5), we get that

x · xiB
U+

r1/R
BU−A

r2/R
⊆ yiB

U+

8r1/R
BU−A

6r2/R
= yiB

U+

r1/e
BU−A

r2/e
,

which completes the proof. �

Proof of Lemma 2.9. Choose η0(M) > 0 to be small enough so that Lemmas A.1 and A.2
will be applicable and that the map g �→ xg from Bη → Γ\G is injective for all x ∈ X�M . Let
P = {P0, . . . , Pn} be an (M,η) partition.

Consider the function f(x) = 1
N

∑N−1
0 1X>M (T ix) and note that this function is constant

on each P ∈ PN .
Setting X ′ = X�M ∩ {x : f(x) � κ}, we obtain that

1 � μ
(
X>M

)
+ μ ({f (x) > κ}) + μ (X ′) � μ

(
X>M

)
+ κ−1

∫
f (x) dμ + μ (X ′)

= μ
(
X>M

)
+ κ−1μN

(
X>M

)
+ μ (X ′) ,

thus proving part (3) in the theorem.
For S ∈ PN , S ⊆ X ′ set Vm =

∣∣{0 � i � m | T i(S) ⊆ X>M
}∣∣. Let C be the constant from

Lemma A.2. We claim that S ⊆ ⋃C|Vm|

1 yiBη,N with yi ∈ S for any 0 � m � N , and the lemma
will follow by setting m = N − 1. For m = 0, let y ∈ S ⊆ Pi ⊆ xiB η

10
for some i � 1, so by

Lemma A.1, S ⊆ yBη, thus proving the case for m = 0.

Assume S ⊆ ⋃C|Vm|

1 yiBη,m with yi ∈ S for m < N − 1 and we prove for m + 1.

• Suppose first Tm+1S ⊆ X�M so that Tm+1S ⊆ Pj ⊆ xjB η
10

for some j � 1. This case will
be complete if S ∩ yiBη,m = S ∩ yiBη,m+1 for every i. Indeed, Lemma A.1 implies Tm+1S ⊆
xjB η

10
⊆ yia

(m+1)Bη, so if yig ∈ S with g ∈ Bη,m, then[
yia

(m+1)
]
a−(m+1)ga(m+1) = yiga

(m+1) ∈ Tm+1S′ ⊆ yia
(m+1)Bη.

By the assumption on the injectivity radius, we conclude that g ∈ Bη,m ∩ a(m+1)Bηa
−(m+1) =

Bη,m+1, which is what we wanted to show.
• Suppose now Tn+1S ⊆ X>M . By Lemma A.2, for each i, we have that S ∩ yiBη,m ⊆⋃C
j=1 ỹ

(j)
i B η

e ,m
⊆ ⋃C

j=1 ỹ
(j)
i B η

e ,m+1 with ỹji ∈ S, which completes this case and the proof. �
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Remark A.3. In the original proof of Lemma 4.5 from [5], there was a slight inaccuracy
in the final argument where the center of the balls yBη,m was not shown to be inside S. This
inaccuracy is resolved in Lemma A.2.

Acknowledgements. The authors would like to thank Manfred Einsiedler for valuable
discussions.
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