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The Euclidean minimum M(K) of a number field K is an
important numerical invariant that indicates whether K is
norm-Euclidean. When K is a non-CM field of unit rank 2
or higher, Cerri showed M(K), as the supremum in the
Euclidean spectrum Spec(K), is isolated and attained and
can be computed in finite time. We extend Cerri’s works by
applying recent dynamical results of Lindenstrauss and Wang.
In particular, the following facts are proved:

(1) For any number field K of unit rank 3 or higher, M(K)
is isolated and attained and Cerri’s algorithm computes
M(K) in finite time.

(2) If K is a non-CM field of unit rank 2 or higher, then the
computational complexity of M(K) is bounded in terms
of the degree, discriminant and regulator of K.

© 2013 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

✩ Uri Shapira is partially supported by the Advanced research Grant 228304 from the European Research
Council. Zhiren Wang is partially supported by an AMS–Simons travel grant and the NSF Grant
DMS-1201453.
* Corresponding author.

E-mail addresses: ushapira@gmail.com (U. Shapira), zhiren.wang@yale.edu (Z. Wang).

0022-314X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jnt.2013.09.014



Author's personal copy

94 U. Shapira, Z. Wang / Journal of Number Theory 137 (2014) 93–121

1.2. Statement of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2. Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.1. Notations in number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.2. Relation with the group of units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.3. Reduction to a bounded domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3. Computational complexity in non-CM fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1. Rigidity of Cartan actions by toral automorphisms . . . . . . . . . . . . . . . . . . . . . . . 104
3.2. Effective aspects of rigidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4. Euclidean spectra of CM fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.1. Product structure of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2. Rigidity of the diagonal action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3. Localized spectrum on invariant subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4. Proof of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

1. Introduction

1.1. Background

A number field K is said to be norm-Euclidean if its ring of integers OK is a Euclidean
domain with respect to the algebraic norm |NK(·)|, that is, for all x, y ∈ OK , there exists
a ∈ OK such that |NK(x−ay)| < |NK(y)|. The Euclidean minimum of K is a numerical
indicator of whether K is norm-Euclidean or not.

Definition 1.1. The Euclidean minimum of an element x ∈ K is mK(x) =
infy∈x+OK

|NK(y)|.
The Euclidean spectrum of the number field K is the image {mK(x): x ∈ K} and the

Euclidean minimum of K is M(K) = supx∈K mK(x).

It is known that K is norm-Euclidean if M(K) > 1 and is not norm-Euclidean if
M(K) < 1. When M(K) = 1, it was proved by Cerri [Cer06] that if the unit rank of K
is at least 2 then it is not norm-Euclidean.

One can easily check that mK(x) � 0 and M(K) > 0. When K is totally real it
is part of a conjecture of Minkowski that M(K) � 2−d

√
DK where d and DK denote

respectively the degree and discriminant of K. The conjecture has been proved only
for number fields of low degrees. However, weaker general upper bounds are available:
for totally real fields Chebotarev proved M(K) � 2− d

2
√
DK (see for example [HW79,

§24.9]). For general number fields (not necessarily totally real), Bayer Fluckiger showed
in [BF06] that

M(K) � 2−dDK . (1.1)

In the rest of this paper, we will always write

K = K ⊗Q R. (1.2)
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The notions of Euclidean spectrum and minimum can be extended to K. To do this, one
needs a natural extension of the algebraic norm NK to a continuous function NK on the
real vector space K, which satisfies

NK(x⊗ s) = sdNK(x), ∀x ∈ K, s ∈ R. (1.3)

The exact definition of NK will be given in Definition 2.2.

Definition 1.2. For x ∈ K, we define the inhomogeneous minimum of x as mK(x) =
infy∈x+OK

|NK(y)|. The inhomogeneous spectrum and inhomogeneous minimum of K

are respectively

Spec(K) =
{
mK(x): x ∈ K

}
and M(K) = sup

x∈K

mK(x).

K is a subset of K by identifying x with x ⊗ 1. Moreover, NK and mK coincide
respectively with NK and mK when restricted to K. In consequence, Spec(K) ⊂ Spec(K)
and M(K) � M(K). Actually, the equality between the two minima always holds by the
works of Barnes–Swinnerton-Dyer [BSD52], van der Linden [vdL85] and Cerri [Cer06].

Proposition 1.3. (See [Cer06, Corollary 1].) M(K) = M(K) for all number fields K. If
the unit rank of K is at least 2, then M(K) ∈ Q.

It can be shown that for all x ∈ K,

∃y ∈ x + OK such that
∣∣NK(y)

∣∣ � M(K). (1.4)

Definition 1.4. M(K) is said to be attained in Spec(K) if (1.4) is true for all x ∈ K as
well; or, equivalently, whenever x ∈ K satisfies mK(x) = M(K), there exists y ∈ x+OK

such that |NK(y)| is exactly M(K).

It should be noted that the term “attained” is defined in a slightly confusing sense. It
doesn’t refer to whether or not the supremum is achieved in the sup–inf expression

M(K) = M(K) = sup
x∈K

inf
y∈x+OK

∣∣NK(y)
∣∣. (1.5)

Instead, it means the infimum is attained at every point x that achieves the supremum.
For more information on Euclidean minima and spectra, we refer the reader to Lem-

mermeyer’s survey [Lem95].
A few natural questions one can ask about M(K) are:

(1) Is M(K) ∈ Spec(K)?
(2) If M(K) ∈ Spec(K), is it an isolated point in Spec(K)?
(3) Is M(K) attained in the sense defined above?
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(4) Is Spec(K) equal to Spec(K)? Can one provide concrete description of these spectra?
(5) Is M(K) algorithmically computable?
(6) Can one bound the computational complexity of M(K)?

We will see that questions (1)–(4) are very much related and a complete answer to
question (4) usually allows one to answer the preceding ones.

In relation to questions (1)–(4), when K is a non-CM field of unit rank at least 2,
Cerri proved in [Cer06] that M(K) is isolated and attained in Spec(K). In fact, Spec(K)
and Spec(K) were shown to be equal and a complete characterization of the spec-
tra was obtained. Namely, the non-zero part of Spec(K) is a decreasing sequence of
rational numbers that converge to 0. Furthermore, Cerri showed that the preimage
{x ∈ K: mK(x) = M(K)} is a non-empty subset of K and is the union of finitely
many residue classes modulo OK .

In relation to question (5), computations in many fields of low degree are listed
in [Lem95]. By developing ideas introduced in works of Barnes and Swinnerton-
Dyer [BSD52] and Cavallar and Lemmermeyer [CL98], which focused respectively on
quadratic and cubic fields, Cerri [Cer05,Cer07] gave an algorithm that computes M(K).
In case that K is not a CM number field and has unit rank 2 or higher, Cerri showed
that the algorithm always terminates in a finite number of steps. However, it is unknown
whether the algorithm works in general. Moreover, there was no bound on the number of
steps required before the algorithm stops, i.e. the computational complexity of M(K).

Therefore, the cases that remain to be resolved are: questions (1)–(5) when K is either
CM or has unit rank 1, and question (6) in general.

An important ingredient in the works [Cer05,Cer06,Cer07] of Cerri was the application
of a result from dynamical systems by Berend to the natural multiplicative action by the
group of units UK on K/OK . In [Ber83], Berend established the rigidity of higher-rank
irreducible commutative actions by toral automorphisms, showing that any orbit is finite
or dense. The special form needed for the applications in this paper will be stated in
Theorem 3.4. The higher-rank and irreducibility conditions in Berend’s theorem corre-
spond respectively to Cerri’s assumptions that the unit rank is at least 2 and the number
field is non-CM.

1.2. Statement of main results

In this paper, we strengthen and complement Cerri’s results in two different ways
based on two recent extensions to Berend’s theorem.

In contrast to the irreducible actions studied in Theorem 3.4, Lindenstrauss and Wang
investigated in [LW12] a special case of reducible actions by commuting toral automor-
phisms. Namely, given a totally irreducible Cartan action by commuting automorphisms
on the d-dimensional torus Td, the meaning of which will be specified later in the pa-
per, one can consider the diagonal action on (Td)2. When the rank of the action is at
least 3, orbit closures under the diagonal action are classified in [LW12]. When K is a
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CM field, the action by UK on K/OK is, up to a finite lifting, such a diagonal action
(see diagram (4.2)).

Using the classification above, when K is CM and rank(UK) � 3, the main result
of the present paper, Theorem 4.9, allows us to complement Cerri’s work and answer
questions (1)–(5). It gives a complete description of the inhomogeneous and Euclidean
spectra, which will actually be proved to be equal and contain only rational numbers.
In contrast to the non-CM case, the spectra have an infinity of accumulation points.
In particular, the following corollaries follow from Theorem 4.9. The following corollary
positively answers questions (1)–(4).

Corollary 1.5. Suppose K is a CM number field of unit rank 3 or higher. Then M(K)
is attained and isolated in Spec(K); moreover, the set {z ∈ K: mK(z) = M(K)} is
contained in K and is the union of finitely many residue classes modulo OK .

In relation to question (5) we prove

Corollary 1.6. If K is a CM number field of unit rank 3 or higher, then Cerri’s algorithm
computes M(K) in a finite number of steps.

Combined with Cerri’s results [Cer05,Cer06,Cer07] regarding non-CM fields, it follows
that the properties in Corollaries 1.5 and 1.6 hold, or equivalently, questions (1)–(5) have
affirmative answers, for any number field that has unit rank 3 or higher, and in particular,
for all fields of degree 7 or higher.

Theorem 1.7. Assume K is a number field of unit rank 3 or higher. Then M(K) is
attained and isolated in Spec(K), and is computable in finite time.

Finally, in relation to question (6), in [Wan11], an effective version of Theorem 3.4 was
obtained by generalizing methods from Bourgain, Lindenstrauss, Michel and Venkatesh’s
one-dimensional study [BLMV09]. Using this result and following Cerri’s strategies, we
will give in Section 3 an estimate of the number of possible residue classes in K modulo
OK on which mK may possibly achieve the maximum M(K) when K is non-CM and
UK has at least rank 2. This yields the following upper bound to the computational
complexity of M(K).

Theorem 1.8. If K is a non-CM number field whose unit rank is greater than or equal
to 2, then the computational complexity of M(K) is bounded by exp exp exp(D

CF2
UK

K )
where the constant C depends only on the degree of K.

Here DK is the discriminant of the field and FUK
is a number that measures the

sizes of fundamental units in K, for the exact definition, see Section 2.3. In particular,
FUK

= Od(RK) where d and RK are respectively the degree and regulator of K. So
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Theorem 1.8 says the computational complexity of the Euclidean minimum is bounded
in terms of the degree, discriminant and regulator of the number field.

Due to the fact that the orbit closure classification from [LW12] is ineffective, such a
complexity estimate is currently unavailable for CM fields. Any quantitative version of
that result (which is stated in the present paper as Proposition 4.5) would lead to some
kind of bound on the computational complexity of M(K), K being CM with unit rank 3
or higher.

2. Generalities

2.1. Notations in number fields

From now on let K be a number field with r1 real embeddings σ1, . . . , σr1 and r2
pairs of conjugate imaginary embeddings (σr1+1, σr1+r2+1), . . . , (σr1+r2 , σr1+2r2), where
σr1+r2+j = σr1+j for 1 � j � r2. Then the degree of K is d = r1 + 2r2.

Denote by OK the ring of integers in K and by UK = O∗
K the group of units. Let

r = rank(UK) denote the unit rank of K, which equals r1 + r2 − 1 by Dirichlet’s Unit
Theorem, in the rest of paper.

We denote hereafter I = {1, 2, . . . , r1 + r2}, di = 1 for 1 � i � r1, and di = 2 for
r1 + 1 � i � r1 + r2.

Recall that the algebraic norm of θ ∈ K is NK(θ) =
∏d

i=1 σi(θ), in particular,

∣∣NK(θ)
∣∣ = d∏

i=1

∣∣σi(θ)
∣∣ = r1∏

i=1

∣∣σi(θ)
∣∣ · r1+r2∏

i=r1+1

∣∣σi(θ)
∣∣2 =

∏
i∈I

∣∣σi(θ)
∣∣di

. (2.1)

K can be embedded into Rr1 ⊕ Cr2 by the canonical map

σ : θ 	→
(
σ1(θ), . . . , σr1(θ), σr1+1(θ), . . . , σr1+r2(θ)

)
, (2.2)

and it is well known that σ(OK) is a cocompact lattice in Rr1 ⊕Cr2 ∼= Rd. Therefore as
K = OK ⊗Z Q, one can identify K = K ⊗Q R with Rr1 ⊕ Cr2 via σ.

Indeed, if x = θ ⊗ s where θ ∈ K, s ∈ R, then we can denote

σi(x) = sσi(θ), ∀i = 1, . . . , d, (2.3)

and again let

σ(x) =
(
σ1(x), . . . , σr1(x), σr1+1(x), . . . , σr1+r2(x)

)
. (2.4)

Then σ extends to an isomorphism between K and Rr1 ⊕ Cr2 .
Notice that K ⊂ K and that if x ∈ K then the expressions (2.3) and (2.4) agree with

previous definitions.
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Each element x ∈ K will be represented as

(xi)i∈I : xi ∈ R if 1 � i � r1, xi ∈ C if r1 + 1 � i � r1 + r2. (2.5)

Moreover, the distance between two points x and x′ is ‖x− x′‖ where

‖x‖ =
(∑

i∈I

|xi|2
) 1

2

. (2.6)

For all R > 0, define a box-shaped compact subset

BR =
{
x ∈ K, |xi| � R, ∀i ∈ I

}
. (2.7)

A point x ∈ K is said to be rational if it is in K.

Notation 2.1. In light of the identification above, from now on we will simply write xi

for σi(x) for all x ∈ K and i ∈ I.

Definition 2.2. The algebraic norm on K is

NK(x) =
r1∏
i=1

xi

r1+r2∏
i=r1+1

|xi|2. (2.8)

Clearly NK is a continuous function on K and satisfies (1.3).
Observe that K acts naturally on K by multiplication:

θ′ · (θ ⊗ s) = θ′θ ⊗ s, ∀θ, θ′ ∈ K, ∀s ∈ R. (2.9)

In terms of the coordinate system (2.5), this multiplication writes:

(θx)i = θixi, ∀i ∈ I. (2.10)

It follows directly from definitions that

NK(xy) = NK(x)NK(y), ∀x ∈ K, ∀y ∈ K. (2.11)

Define the logarithmic embedding map L : UK 	→ RI by

L(u) =
(
log |ui|

)
i∈I

. (2.12)

Then L is a group morphism, and by Dirichlet’s Unit Theorem its image L(UK) is a
cocompact lattice in the subspace

W =
{

(wi)i∈I :
∑
i∈I

diwi = 0
}
. (2.13)
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The size of units from UK can be measured in terms of the following norm on W :

h0(w) = 1
2
∑
i∈I

di|wi| =
∑
i∈I
wi�0

diwi = −
∑
i∈I
wi�0

diwi, ∀w ∈ W. (2.14)

The composition map hMah = h0 ◦ L which maps UK to [0,∞) is called the logarithmic
Mahler measure on UK . Then as h0(w) = 0 only if w = 0, hMah(u) = 0 if and only if u
is a root of unity.

Definition 2.3. K is a CM -number field if it satisfies one of the following equivalent
conditions:

(i) K is a totally complex quadratic extension of some totally real number field F ;
(ii) There is a proper subfield F such that rank(UF ) = rank(UK).

To see that the conditions are actually equivalent, see for instance [Par75].

Remark 2.4. A CM number field K has a natural complex conjugation x 	→ x̄ that is an
automorphism and acts as the conjugation in C in all embeddings of K. Moreover, the
extension K/F is normal and Gal(K/F ) consists of the identity map and the complex
conjugation (see [Was97, p. 39]).

2.2. Relation with the group of units

mK(x) and mK(x) depend only on the residue class of x modulo OK . Hence we project
them to the quotient K/OK :

Definition 2.5. For z ∈ K/OK , let

mK/OK
(z) = inf

x∈π−1
OK

(z)

∣∣NK(x)
∣∣. (2.15)

Here and in the sequel πΓ denotes the natural projection from K to K/Γ for any
lattice Γ ⊂ K. Obviously

mK = mK/OK
◦ πOK

. (2.16)

Therefore

Spec(K) =
{
mK/OK

(z): z ∈ K/OK

}
; (2.17)

Spec(K) =
{
mK/OK

(z): z ∈ K/OK

}
; (2.18)

and by Proposition 1.3,
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M(K) = M(K) = sup
z∈K/OK

mK/OK
(z) = sup

z∈K/OK

mK/OK
(z). (2.19)

In particular, the function mK/OK
is bounded by the expression (1.1).

K/OK is a compact abelian group isomorphic to Td = Rd/Zd. Moreover, we equip
K/OK with the distance projected from K and denote it indifferently by ‖ · ‖, which
makes K/OK a locally Euclidean metric space. The volume of K/OK is

√
DK .

Moreover, suppose z ∈ K/OK and x ∈ π−1
OK

(z), then z is a torsion point if and only
if x is rational, in which case we say z is rational as well.

Under the multiplicative action (2.9), the group of units UK = O∗
K preserves the

cocompact lattice OK in K.
From now on let G be a finite-index subgroup of UK . The multiplication (2.9) induces

an action of G on the compact quotient K/OK :

u.(x + OK) = u.x + OK , ∀u ∈ G, x ∈ K. (2.20)

The multiplication by u on K/OK is the identity map if and only if its lift on K,
which is given by (2.9), is the identity. This happens only when u = 1. Therefore the
induced G-action is faithful.

Furthermore, the multiplication (2.20) is continuous on K/Γ and preserves the addi-
tive structure, hence is actually an automorphism of the compact abelian group K/OK .

For all z ∈ K/OK denote by G.z = {uz: u ∈ G} the G-orbit of z and by G.z the
orbit closure.

Lemma 2.6. Suppose G is a finite-index subgroup of UK . Then:

(1) For all z, z′ ∈ K/OK , if z′ ∈ G.z, then mK/OK
(z′) = mK/OK

(z);
(2) The function mK/OK

is upper semicontinuous on K/OK , that is, if limn→∞ zn = z

then lim supn→∞ mK/OK
(zn) � mK/OK

(z);
(3) For all z ∈ K/OK ,

mK/OK
(z) = min

z′∈G.z
mK/OK

(
z′
)

� inf
{∥∥z′∥∥d: z′ ∈ G.z

}
;

(4) If z in K/OK , then mK/OK
(z) lies in Q and is attained by |NK(x)| at some x ∈

π−1
OK

(z).

Proof. (1) As z′ ∈ G.z ⇔ z ∈ G.z′ it suffices to show mK/OK
(z′) � mK/OK

(z). Suppose
z′ = uz where u ∈ G ⊂ UK . Then for all x ∈ π−1

OK
(z), ux is in π−1

OK
(z′) because

uOK = OK . Thus mK/OK
(z′) � |NK(ux)| = |NK(u)NK(x)| = |NK(x)| by (2.11), where

we used the fact that NK(u) = ±1 when u ∈ UK . Claim (1) is obtained by taking
infimum over all x.

(2) Suppose the opposite is true. Then there must be a converging sequence {zn}
with limit z and a constant ε > 0 such that mK/OK

(zn) > mK/OK
(z) + ε, ∀n. By the
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definition of mK/OK
(z), one may find x ∈ π−1

OK
(z) such that |NK(x)| < mK/OK

(z) + ε.
There exist a sequence of lifts {xn} such that πOK

(xn) = zn, ∀n and limn→∞ xn = x.
Since NK is a continuous function on K, we have

lim
n→∞

mK/OK
(zn) � lim

n→∞

∣∣NK(xn)
∣∣ = ∣∣NK(x)

∣∣ < mK/OK
(z) + ε, (2.21)

contradicting the choice of {zn} and ε.
(3) It follows from (1) and (2) that mK/OK

(z) � infz′∈G.z mK/OK
(z′). Because z ∈

G.z, the equality holds and the infimum is actually a minimum. The second inequality
follows from the fact that∣∣NK(x)

∣∣ =∏
i∈I

|xi|di � ‖x‖d, ∀x ∈ K, (2.22)

and the definition of the metric ‖ · ‖ on K/OK .
(4) For z ∈ K/OK , there is q ∈ N such that z is of order q in K/OK . Then for all

x ∈ π−1
OK

(z), qx ∈ OK . Hence x ∈ q−1OK and |NK(x)| ∈ q−dZ. So mK/OK
(z), which is

the infimum of all the |NK(x)|’s, lies in the discrete set q−dZ as well and equals |NK(x)|
for at least one x ∈ π−1

OK
(z). �

2.3. Reduction to a bounded domain

We introduce an upper bound on the size of fundamental units by

FUK
= min

(u1,...,ur)

rmax
l=1

hMah(ul), (2.23)

where the minimum is taken over all sets of fundamental units (u1, . . . , ur). Recall
u1, . . . , ur ∈ UK form a set of fundamental units if: (1) they are multiplicatively in-
dependent, i.e.

∏r
l=1 u

el
l , el ∈ Z, is equal to 1 if and only if the el’s are all zero, and

(2) together with all roots of unity in K, they generate UK . The quantity FUK
is well

defined and strictly positive.
Take the previously defined convex norm h0 on W and recall that L(UK) is a co-

compact lattice of the r-dimensional vector space W . Consider the successive minima
0 < t1 � t2 � · · · � tr of L(UK) with respect to h0. Then it follows from the fact
hMah = h0 ◦ L and the definition of FUK

that FUK
= tr.

Recall that the regulator RK of K is the determinant of the lattice L(UK). Minkowski’s
theorem implies that RK �d

∏r
j=1 tj . Here, each tj can be written as h0(L(u)) =

hMah(u) for some u ∈ UK of infinite order. Furthermore, it is known that the logarithmic
Mahler measure of any algebraic unit of infinite order is bounded from below by a
constant depending only on its algebraic degree (see for example [Vou96]), i.e. tj �d 1
for all j. Hence

1 �d FUK
�d (t1 · · · tr−1)−1RK �d RK . (2.24)
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Moreover, by the work of Sands [San91], RK �d D
1
2
K(logDK)d. Therefore,

1 �d FUK
�d D

1
2
K(logDK)d. (2.25)

Lemma 2.7. Suppose G is a finite-index subgroup of UK , then there is a constant C

depending on K and G such that for any non-zero element x ∈ K, there is g ∈ G

satisfying that |(gx)i| � C|NK(x)| 1d for all i ∈ I.
Moreover, when G = UK , C can be taken to be e

1
2 rFUK .

Proof. We give first a proof in the special case that G = UK .
Define w ∈ RI by wi = log |xi| − 1

d

∑
j∈I dj log |xj |. Then

∑
j∈I djwj = 0 and thus w

is in the space W given by (2.13).
As above, let t1, . . . , tr be the successive minima of L(UK) with respect to h0. By a

theorem of Jarník (see [GL87, p. 99]), there is a vector y ∈ L(UK) such that h0(w−y) �∑r
j=1 tj

2 � 1
2rFUK

. In particular, wi − yi � di|wi − yi| � h0(w− y) � 1
2rFUK

for all i ∈ I

by (2.14).
Suppose y = L(v) where v ∈ UK , then wi − yi is just log |xi| − log |vi| −

1
d

∑
j∈I dj log |xj |, which equals log |(v−1)ixi| − 1

d log |NK(x)|. Hence the previous in-
equality says |(v−1)ixi| � e

1
2 rFUK |NK(x)| 1d . This proves the lemma form G = UK .

From this special case one can easily deduce the general statement for any finite-index
subgroup G ⊂ UK . Indeed, fix a set A consisting of one representative from each residue
class in the finite quotient UK/G. We already proved there is u ∈ UK such that |(ux)i| <
e

1
2 rFUK |NK(x)| 1d . Pick g ∈ G such that gu−1 ∈ A. Then |(gx)i| < C|NK(x)| 1d where

C = (maxa∈A,j∈I |aj |) · e
1
2 rFUK . �

Corollary 2.8. Suppose G is a finite-index subgroup of UK then there exists a constant
R > 0 such that

mK(x) = inf
x′∈(G.x+OK)∩BR

∣∣NK

(
x′)∣∣, ∀x ∈ K, (2.26)

where BR is defined as in (2.7).
Moreover, one can take R = D

1
d

Ke
1
2 rFUK if G = UK .

Proof. For z = πOK
(x), it follows from Lemma 2.6 that

mK(x) = mK/OK
(z) = inf

z′∈G.z
mK/OK

(z) = inf
x′∈G.x+OK

∣∣NK

(
x′)∣∣. (2.27)

This shows mK(x) is bounded from above by the right-hand side of (2.26).
On the other hand, for an arbitrarily small ε > 0, one can pick y ∈ x + OK such

that |NK(y)| � mK(x) + ε. Since mK(x) � M(K) � 2−dDK by (1.1), we may assume
|NK(y)| � DK . Lemma 2.7 asserts that there exists an element x′ in
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G.y ∩B
C|NK(y)|

1
d
⊂ (G.x + OK) ∩B

C|NK(y)|
1
d
⊂ (G.x + OK) ∩BR, (2.28)

where C is the constant in the lemma and R = CD
1
d

K . Then |NK(x′)| = |NK(y)| �
mK(x) + ε by the G-invariance of the norm in Lemma 2.6 and the choice of y, and
thus as ε can be arbitrarily small we see mK(x) � infx′∈(G.x+OK)∩BR

|NK(x′)|, which
completes the proof. �
3. Computational complexity in non-CM fields

In this section, let K be a non-CM field whose unit rank is r � 2.

3.1. Rigidity of Cartan actions by toral automorphisms

In light of Lemma 2.6, in order to understand mK/OK
(z) it may be helpful to study

the G-orbit of z in the torus K/OK .

Definition 3.1. A toral automorphism ϕ ∈ Aut(Td) = GL(d,Z) is irreducible if Td has
no proper non-trivial ϕ-invariant subtorus. ϕ is totally irreducible if ϕk is irreducible for
all non-zero integers k.

ϕ is irreducible if and only if its characteristic polynomial is irreducible over Q, or
equivalently the eigenvalues of ϕ are distinct conjugate algebraic numbers of degree d.

As we have seen in (2.10), when one identifies K with Rr1⊕Cr2 by σ, the multiplication
by θ ∈ K multiplies on the i-copy of R by θi, and on the j-th copy of C by θr1+j or,
if we view C as R2, by the matrix

(
Re θr1+1 − Im θr1+1
Im θr1+1 Re θr1+1

)
, which has eigenvalues θr1+j

and θr1+r2+j . Hence with respect to some complex eigenbasis (of K ⊗R C = K ⊗Q C),
the multiplication by θ, which is a linear transformation on K, can be diagonalized as
diag(θ1, . . . , θd) simultaneously for all θ ∈ K. It follows that:

Remark 3.2. Each u ∈ UK acts as an irreducible toral automorphism on K/OK if and
only if Q(u) = K.

Definition 3.3. Suppose X ∼= Td and G ⊂ Aut(X) is an abelian subgroup of toral
automorphisms on X. We say the action G � X is Cartan if the following conditions
are satisfied:

(i) There is an element g ∈ G which acts as an irreducible toral automorphism of X;
(ii) One cannot find a larger abelian subgroup G1 ⊃ G in Aut(X), such that rank(G1) >

rank(G).

Theorem 3.4. (See Berend [Ber83].) Suppose G � X is a faithful Cartan action by
automorphisms on a torus X, where G is an abelian group of rank r � 2 and at least
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one element g ∈ G acts as a totally irreducible toral automorphism. Then every G-orbit
is either a finite set of torsion points, or dense in X.

Proof. Berend’s original theorem from [Ber83] was in fact much stronger as he showed
the conclusion above holds for a much larger class of semigroup actions by commuting
toral endomorphisms. It was known that the assumptions stated here imply Berend’s
conditions when G ∼= Zr (see, for instance, [LW12, §2.4]). For a general finitely gen-
erated abelian group G, there is a finite index subgroup G′ that is isomorphic to Zr.
Moreover, some non-trivial power of the totally irreducible element g, which also acts
totally irreducibly, belongs to G′. The rigidity of the G-action on X follows easily from
that of its restriction to G′. �

We now make the link between the UK -action on K/OK and dynamics.

Lemma 3.5. Suppose K is a non-CM number field of unit rank r � 2, and G ⊂ UK is a
finite-index group that is isomorphic to Zr. Then:

(1) There is u ∈ G that acts as a totally irreducible automorphism on K/OK .
(2) The multiplicative G-action (2.9) on K/OK is Cartan.

Proof. (1) By Remark 3.2, it suffices to find u ∈ G such that for each non-zero integer k,
Q(uk) = K. It can be checked that there is u0 ∈ UK that has this property (see [Cer06,
Lemma 2]). As G has finite index in UK , it contains a non-trivial power u of u0, which
has the desired property as well.

(2) Suppose the G-action is not Cartan, that is, there is an extension of the action to
a larger abelian group G1 ⊃ G that acts on K/OK by toral automorphisms, such that
rank(G1) > rank(G).

Take an arbitrary element A from G1. Then A can be regarded as an element from
Aut(K/OK), or equivalently, an element from GL(K) that preserves the lattice OK .
Consider the element 1 from OK , and denote γ = A.1 ∈ OK . Hence (A−γ).1 = 0 where
A and γ are both regarded as linear maps from K to itself. By part (1), G contains an
element u such that Q(u) = K. Since the G1-action is commutative, for any power uk,

(A− γ).uk = (A− γ).
(
uk.1

)
= uk.(A− γ).1 = 0. (3.1)

However, because Q(u) = K, the powers uk span the Q-vector space K and hence
K = K ⊗Q R as well. It follows that (A− γ).v = 0 for any v ∈ K. In other words, as an
element from GL(K), A coincides with the multiplication by γ ∈ OK .

Similarly, A−1 acts by the multiplication by some β ∈ OK . Then the multiplication by
γβ ∈ OK on K is trivial, which is possible only if γβ = 1. Hence γ belongs to UK = O∗

K ;
that is, A is actually the multiplication by some element from UK .
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Therefore, G1 can be regarded as a subgroup of UK . As G has finite index in UK ,
G1 cannot have strictly higher rank than G, which contradicts the assumption. This
completes the proof. �
3.2. Effective aspects of rigidity

In order to show Theorem 1.8, we will apply Proposition 3.7 below, an effective version
of Theorem 3.4, to the action UK � K/OK . Before doing this, one needs to introduce
the notion of distortion.

The distortion of an isomorphism ψ : Rd 	→ K can be measured by

Mψ = max
(
‖ψ‖Vol

(
K/ψ

(
Zd
))− 1

d ,
∥∥ψ−1∥∥Vol

(
K/ψ

(
Zd
)) 1

d
)
, (3.2)

where ‖ψ‖ and ‖ψ−1‖ are norms of linear maps. Mψ is always greater than or equal
to 1.

Note that ψ projects to an isomorphism between Td and K/ψ(Zd), which we denote
by ψ as well.

The distortion of an ideal lattice in K can be bounded in terms of the discriminant:

Lemma 3.6. (See [Wan11, Lemma A.5].) If I is an ideal in OK , then there exists an
isomorphism ψ between Rd and K such that ψ(Zd) = I and Mψ = Od(D

d−1
2d

K ).

Proposition 3.7. (See [Wan11, Proposition 7.6].)1 Let K be a degree d non-CM number
field of unit rank 2 or higher, Γ ⊂ OK be a full rank sublattice preserved by UK under
multiplication, ψ be an isomorphism from Rd to K such that ψ(Zd) = Γ , and q be
a positive integer greater than or equal to exp exp expmax(CM30d

ψ ,max(FUK
, 2)CF2

UK ).
Then for any torsion element z in K/Γ of order at least q, the preimage ψ−1(UK .z) of
the orbit UK .z ⊂ K/Γ is (log log log q)−C−1F−2

UK -dense in Td for an effective constant
C > 1 that depends only on d.

By an effective constant, we mean that it is possible to compute an explicit value C

for each given d, if one wishes.

Corollary 3.8. Let K be as in Proposition 3.7. There is a constant C > 1 that depends
only on d such that if

Q = exp exp exp
(
D

CF2
UK

K

)
, (3.3)

then:

1 In [Wan11, Proposition 7.6], the density parameter is misstated as (log log log q)−C−1F2
UK instead of

(log log log q)−C−1F−2
UK ; which results from mistakenly copying the exponent from Proposition 7.1. The

proposition is otherwise not affected.
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(1) mK/OK
(z) < 2−d for any rational element z ∈ K/OK whose minimal order is

greater than or equal to Q.
(2) For R = D

1
d

Ke
1
2 rFUK ,

M(K) = sup
x∈
⋃

q∈N,2�q<Q q−1OK

(
min

x′∈(UK .x+OK)∩BR

∣∣NK

(
x′)∣∣). (3.4)

Proof. (1) By Lemma 3.6, there is an isomorphism ψ from Rd to K that sends Zd to OK ,
such that Mψ = Od(D

d−1
2d

K ). Then by (3.2),

‖ψ‖ � Mψ · Vol(K/OK) 1
d = MψD

1
2d
K = Od

(
D

1
2
K

)
. (3.5)

Following this estimate and the inequality (2.25), for a large constant C that depends
only on D,

D
CF2

UK

K � max
(
C0M30d

ψ ,max(FUK
, 2)C0F2

UK

)
(3.6)

where C0 is the constant from Proposition 3.7.
Therefore if Q � exp exp exp(D

CF2
UK

K ) and z is as in the statement, then it follows
from the lemma that there exists u ∈ UK such that the preimage ψ−1(uz) lies within
distance less than (log log logQ)−C−1

0 F−2
UK from the origin in Td. So

‖uz‖ < ‖ψ‖(log log logQ)−C−1
0 F−2

UK �d D
1
2
KD

− C
C0

K . (3.7)

In particular, by Lemma 2.6(3),

mK/OK
(z) <

(
MψD

− C
C0

K

)d = Od

((
D

− C
C0

+ 1
2

K

)d)
. (3.8)

Because DK � 2, if C is sufficiently large (depending only on d) then mK/OK
(z) < 2−d.

(2) Notice first that mK(1
2 ) clearly doesn’t vanish and belongs to 2−dZ by the proof

of Lemma 2.6(4). Thus M(K) � mK(1
2 ) � 2−d.

For all rational point x ∈ K, define its denominator as the smallest q ∈ N such that
qx ∈ OK . Then for all rational x with denominator greater than or equal to Q, its
projection z in K/OK is a rational point as required by (1). Thus mK(x) = mK(x) =
mK/OK

(z) < 2−d � M(K). It follows from this fact and definition that M(K) is the
supremum of mK(x) where x has a small denominator:

M(K) = sup
{
mK(x): x ∈

⋃
q∈N, 2�q<Q

q−1OK

}
. (3.9)

q is supposed to be at least 2 since the q = 1 case is not interesting where x ∈ OK and
mK(x) = 0. It suffices to apply Corollary 2.8 to complete the proof. �
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Proof of Theorem 1.8. By Corollary 3.8, to determine M(K) it suffices to calculate and
compare |NK(x′)| for all x′ from the union A of those Ωx’s where x ∈

⋃
q∈N,q<Q q−1OK

and Ωx = (UK .x + OK) ∩ BR with R = D
1
d

Ke
1
2 rFUK . Notice that the Ωx’s are all finite,

and are either equal or disjoint for different x’s. So A can be regarded as a disjoint union
and every |NK(x′)| comes only once into the comparison.

Since every element from UK .x + OK has the same denominator as x, A ⊂⋃
q∈N,q<Q q−1OK . So A =

⋃
q∈N,q<Q A(q) where A(q) = A ∩ q−1OK .

Moreover, A is clearly inside the box BR. So A(q) ⊂ q−1OK ∩BR.
For two distinct elements x′, y′ ∈ A(q), x′ − y′ ∈ q−1OK . So one can deduce |NK(x′ −

y′)| � q−d and it follows that for at least one i ∈ I we have |(x′ − y′)i| � q−1. Therefore⋃
x′∈A(q)(x′ + B 1

2q
) is a disjoint union. Furthermore, this union is covered by BR+ 1

2q
.

Hence one can easily see that

∣∣A(q)∣∣ � Vol(BR+ 1
2q

)
Vol(B 1

2q
) =

(
R + 1

2q
1
2q

)d

=
(
2qD

1
d

Ke
1
2 rFUK + 1

)d
. (3.10)

Because DK > 1 and q ∈ N, qD
1
d

Ke
1
2 rFUK > 1. Therefore

|A| �
∑

q∈N,q<Q

(
3qD

1
d

Ke
1
2 rFUK

)d � Qd+1(3D 1
d

Ke
1
2 rFUK

)d
� exp

(
(d + 1) exp exp

(
D

C0F2
UK

K

))(
3D

1
d

Ke
1
2 rFUK

)d
� exp exp exp

(
D

C1F2
UK

K

)
, (3.11)

where C0 is the constant denoted by C in Corollary 3.8 and C1 is a larger constant,
chosen in a way that depends only on d, which is possible because DK � 4, FUK

�d 1
and r � d− 1.

Therefore, one only needs to compute and compare the algebraic norms of at most
exp exp exp(D

C1F2
UK

K ) numbers from A ⊂ K. For each x ∈ A, its denominator is bounded
by Q and all its archimedean embeddings are bounded by R = D

1
d

Ke
1
2 rFUK . It is known

(see e.g. [Bel04]) that the complexity of computing the algebraic norm of such a number
is polynomial in logQ + logR, which is Od(exp exp(D

(C0+ε)F2
UK

K )) for any ε > 0. Other
operations needed in the computation only require relatively cheap costs, for example a
set of fundamental units can be determined with complexity Od(D

1
4
k ) by [FJ10]. Hence the

total complexity of computing M(K) is bounded by exp exp exp(D
CF2

UK

K ) for a constant
C slightly larger than C1. �
4. Euclidean spectra of CM fields

The dynamics become very different for CM fields, in whose cases the action by UK

on K/OK is essentially not irreducible any more. To see this, let F be a maximal totally
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real subfield of K, that is, a totally real subfield over which K is a totally complex
quadratic extension. Recall that UF is a finite index subgroup of UK . Moreover, F is
a UF -invariant subspace of the Q-vector space K and the s-dimensional real subspace
F = F ⊗Q R ⊂ K projects to a subtorus T of K/OK that is invariant under the
multiplicative action by UF . So the action by any element of UF on K/OK cannot be
an irreducible toral automorphism. Since UF is of finite index, it follows that no element
of UK acts totally irreducibly. Hence the UK-action on K/OK doesn’t satisfy the total
irreducibility condition in Theorem 3.4. In consequence, orbits of irrational points or of
rational points with large denominators don’t have to be close to the origin (see also
[Cer06, Remark 3]).

In this section, let K be a CM field, F be the associated maximal totally real subfield
and F = F ⊗Q R. Then r1 = 0, d = 2r2. For simplicity denote s = r2, then degF = s

and degK = d = 2s. The field K has s pairs of imaginary embeddings (σ1, σs+1),
. . . , (σs, σ2s) and F has s real embeddings τ1, . . . , τs. For all i ∈ I = {1, . . . , s}, the
restrictions of σi and σs+i to F both coincide with τi. Moreover, both UF and UK have
rank r = s− 1.

4.1. Product structure of K

We hope to follow the same strategy as before by looking at the action on K/OK

by some subgroup of UK . As UF coincides with UK up to finite index, it would be
helpful if K/OK has a product structure with respect to the s-dimensional subtorus
F/OF . However, the existence of such a product structure is not clear and there-
fore instead of K/OK we will work on a finite cover of it which splits as a prod-
uct.

Fix an element η ∈ OK such that η /∈ OF . Then K = F ⊕ ηF and K = F ⊕ ηF .
Define a finite-index sublattice in OK by Γ = OF ⊕ ηOF . Clearly Γ is invariant under
multiplication by elements of UF . Hence UF naturally acts on K/Γ .

K/Γ is isomorphic to (F/OF )2. Indeed, there is a unique isomorphism ρ that sends
each x ∈ K to ρ(x) = (ρ(1)(x), ρ(2)(x)) ∈ F

2 in such a way that

x = ρ(1)(x) + ηρ(2)(x). (4.1)

In addition, x belongs to Γ if and only if ρ(x) ∈ O2
F . Therefore the map ρ induces a

continuous isomorphism between K/Γ and (F/OF )2, which is denoted indifferently by
ρ = (ρ(1), ρ(2)).

Since Γ ⊂ OK is of finite index, K/Γ is a finite cover of K/OK . By writing πΓ,OK

for the corresponding finite-to-one projection, πO2
F

for the natural projection from F
2

to (F/OF )2, and π� for πΓ,OK
◦ ρ−1, we complete the following commutative dia-

gram:
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K
∼
ρ

πΓ

πOK

F
2

πO2
F

K/Γ
∼
ρ

πΓ,OK

(F/OF )2

π�

K/OK

(4.2)

As ρ is an isomorphism, π� is also a finite covering map.
A point in one of the spaces in the diagram is said to be rational if it either sits in

K ⊂ K or F 2 ⊂ F
2, or descends from such a point. If a point is rational, then so are

all its images and preimages in the diagram. In the tori K/Γ , (F/OF )2, and K/OK ,
rational points are exactly the torsion points.

Without causing ambiguity, subscript i will indicate the i-th coordinates in both K

and F , which correspond respectively to the embeddings σi of K and τi of F . Notice
that xi is complex for x ∈ K but yi is real for y ∈ F .

The decomposition (4.1) can be expressed easily in terms of the coordinates:

xi =
(
ρ(1)(x)

)
i
+ ηi

(
ρ(2)(x)

)
i
, ∀x ∈ K, ∀i ∈ I. (4.3)

Note ηi ∈ C but (ρ(1)(x))i, (ρ(2)(x))i ∈ R. Furthermore, because ρ is an isomorphism,
we must have

ηi /∈ R, ∀i ∈ I. (4.4)

We rewrite the norm in K:

NK(x) =
s∏

i=1
|xi|2 =

s∏
i=1

∣∣(ρ(1)(x)
)
i
+ ηi

(
ρ(2)(x)

)
i

∣∣2 = N∗
(
ρ(x)

)
, (4.5)

where N∗ is the functional on F
2 ∼= (Rs)2 defined by

N∗
(
y(1), y(2)) =

s∏
i=1

((
y
(1)
i + (Re ηi)y(2)

i

)2 + (Im ηi)2
(
y
(2)
i

)2)
. (4.6)

By (4.4), each factor in the product is a positive definite quadratic polynomial in y
(1)
i

and y
(2)
i . In particular, NK and N∗ are always non-negative.

Let UF act diagonally both on F
2 and on (F/OF )2: given u ∈ UF , for y = (y(1), y(2)) ∈

F
2, uy will stand for (uy(1), uy(2)) and similarly on (F/OF )2.
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Remark 4.1. We have made UF act on all the spaces in the diagram (4.2). Since all the
actions descend from the multiplicative action (2.9) on K, the UF -actions commute with
the maps in the diagram.

As F is totally real, it is in particular not CM. Therefore by Lemma 3.5, the UK-action
on F/OF is Cartan and contains a totally irreducible element. The same are true for the
restriction of the action to any finite-index subgroup G ⊂ UF .

4.2. Rigidity of the diagonal action

Note for each ϕ ∈ F , the subset

V ϕ =
{(

y(1), y(2)) ∈ F
2: y(1) = ϕy(2)} (4.7)

is an s-dimensional subspace of F 2. For ϕ = ∞, let

V ∞ =
{(

y(1), y(2)) ∈ F
2: y(2) = 0

}
. (4.8)

Definition 4.2. An s-dimensional homogeneous G-invariant subtorus of (F/OF )2 is the
projection of V ϕ to (F/OF )2 for some ϕ ∈ F ∪ {∞}, denoted by Tϕ.

It is not hard to check Tϕ is indeed an s-dimensional subtorus [LW12, Lemma 3.3].
Moreover, V ϕ is clearly invariant under the action by UF , and hence so is Tϕ.

Fix from now on a subgroup G ⊂ UF such that G ∼= Zr. Then G is of finite index
in UF , and thus in UK as well. Restrict the action UF � (F/OF )2 to G.

Definition 4.3. An s-dimensional homogeneous G-invariant subset of (F/OF )2 is a subset
of the form G.(Tϕ + z) = {g.(z′ + z): g ∈ G, z′ ∈ Tϕ} for some fixed ϕ ∈ F ∪ {∞} and
rational point z ∈ (F/OF )2. We call ϕ the slope of G.(Tϕ + z).

An s-dimensional homogeneous G-invariant subset of slope ϕ in K/OK is the projec-
tion of such a subset in (F/OF )2 by π�.

Clearly every s-dimensional homogeneous G-invariant subset is indeed invariant under
the G-action.

We list a few basic properties of s-dimensional homogeneous G-invariant subsets:

Lemma 4.4. Let K, F , Γ and G be as above. Suppose the unit rank of K and F is r � 2,
then the following claims hold in both (F/OF )2 and K/OK :

(1) Suppose L is an s-dimensional homogeneous G-invariant subset of slope ϕ ∈ F∪{∞}
where s = degF = r+1. Then L is a finite disjoint union

⋃h
k=1 Tk where each Tk is

a translate of the subtorus Tϕ (resp. the subtorus π�(Tϕ) in K/OK) by a rational
point;
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(2) Let L be as in (1). For a point in L, its G-orbit is either finite or dense in L

depending on whether the point is rational or not;
(3) Any infinite G-invariant closed subset contains at least one s-dimensional homoge-

neous G-invariant subset;
(4) Given ε > 0, there are only finitely many s-dimensional homogeneous G-invariant

subsets that fail to be ε-dense in (F/OF )2 (resp. K/OK).

Proof. In the (F/OF )2 setting, all the properties above can be found in [LW12, §3 & §4].
The corresponding statements for K/OK immediately follow, thanks to the facts that

the G-action commutes with diagram (4.2) and that π� is a finite-to-one continuous
group morphism between two tori. �

The major new ingredient in our analysis is the classification in [LW12] of all infinite
proper G-invariant closed subsets in (F/OF )2. When the unit rank is strictly greater
than 2, all of those are s-dimensional homogeneous G-invariant closed subsets:

Proposition 4.5. Let K, F and G be as above. If the unit rank r is at least 3, then the
following are true in both (F/OF )2 and K/OK :

(1) Every G-orbit closure is either a finite orbit consisting of rational points, or the
whole space (F/OF )2 (resp. K/OK), or an s-dimensional homogeneous G-invariant
subset;

(2) For all ε > 0, there is a finite union of s-dimensional homogeneous G-invariant
subsets that contains all the rational points in (F/OF )2 (resp. in K/OK) whose
orbit fail to be ε-dense.

Proof. Since F is not CM, the proposition was proved for (F/OF )2 in [LW12, Theo-
rem 3.15 & 3.16]. Again this directly implies the same claims in K/OK . �
4.3. Localized spectrum on invariant subsets

We reduce the description of Spec(K) (and that of Spec(K)) to the study of the
behavior of N∗ on certain affine subspaces of F 2.

Lemma 4.6. Suppose L ⊂ K/OK is an s-dimensional homogeneous G-invariant subset
of slope ϕ. Then there is a finite subset ΩL ⊂ F 2 such that

V ϕ + ω ⊂ π−1
O2

F

(
π−1
� (L)

)
, ∀ω ∈ ΩL, (4.9)

and for all z ∈ L,

mK/OK
(z) = min

ω∈ΩL

inf
{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)
∩
(
V ϕ + ω

)}
. (4.10)
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Proof. By Lemma 4.4(1), L is a disjoint union
⊔

a∈A(π�(Tϕ) + a) where A ⊂ K/OK is
a finite collection of rational points and ϕ ∈ F ∪ {∞}. Hence the lift L̃ = π−1

O2
F
(π−1

� (L))
is the union of all sets of the form V ϕ + ω where ω takes value in π−1

O2
F
(π−1

� (A)). The
(V ϕ + ω)’s are parallel s-dimensional affine subspaces in the vector space F

2. For two
different ω’s, the two (V ϕ + ω)’s either coincide or are disjoint. Fix a subset Ω from
π−1
O2

F
(π−1

� (A)) such that L̃ =
⊔

ω∈Ω(V ϕ + ω) is a disjoint union. Remark the union is
locally finite in the sense that any compact set in F

2 intersects only finitely many such
affine subspaces.

L̃ is G-invariant as the G-action commutes with π� and πO2
F
.

Suppose z ∈ L and let x be an arbitrary point from π−1
OK

(z). By Corollary 2.8, we see
that

mK/OK
(z) = mK(x) = inf

x′∈(G.x+OK)∩B

∣∣NK

(
x′)∣∣

= inf
x′∈π−1

OK
(G.z)∩B

∣∣NK

(
x′)∣∣, (4.11)

where B ⊂ K is a compact subset that depends only on K and G, but not on z.
Notice that π−1

OK
(G.z) ⊂ π−1

OK
(L) = ρ−1(L̃). Therefore,

π−1
OK

(G.z) ∩B = π−1
OK

(G.z) ∩
(
ρ−1(L̃) ∩B

)
= ρ−1(π−1

O2
F

(
π−1
� (G.z)

)
∩
(
L̃ ∩ ρ(B)

))
. (4.12)

It follows from local finiteness that there is a finite disjoint decomposition

L̃ ∩ ρ(B) =
⊔

ω∈ΩL

((
V ϕ + ω

)
∩ ρ(B)

)
(4.13)

where ΩL is a finite subset of Ω. For each ω ∈ ΩL the component (V ϕ + ω) ∩ ρ(B) is a
compact region of the affine subspace V ϕ + ω.

From (4.11), (4.12) and (4.13), one can deduce that:

mK/OK
(z) = inf

{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)
∩
( ⊔

ω∈ΩL

(
V ϕ + ω

))
∩ ρ(B)

}
= min

ω∈ΩL

inf
{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)
∩
(
V ϕ + ω

)
∩ ρ(B)

}
. (4.14)

Here we used the fact that NK = N∗ ◦ ρ, as well as that N∗ is, by definition (4.6),
non-negative.

This obviously implies that the right-hand side is bounded by the left-hand side
in (4.10). In the other direction,
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min
ω∈ΩL

inf
{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)
∩
(
V ϕ + ω

)}
� inf

{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)}
= inf

{∣∣NK

(
ρ−1(y)

)∣∣: y ∈ π−1
O2

F

(
π−1
� (G.z)

)}
= inf

{∣∣NK(x)
∣∣: x ∈ G.π−1

OK
(z)
}

= inf
{∣∣NK(x)

∣∣: x ∈ π−1
OK

(z)
}

= mK/OK
(z). (4.15)

Again, we used the commutativity between diagram (4.2) and the G-action, as well as
the G-invariance of |NK(·)|. The proof is completed. �

On each V ϕ + ω, we can analyze explicitly the functional N∗.

Lemma 4.7. For any rational point ω ∈ F 2 and all ϕ ∈ F ∪{∞}, the restriction of N∗ to
the affine subspace V ϕ +ω has a minimum which is achieved by a rational point. Unless
0 ∈ V ϕ + ω, the minimum value is positive and the minimum point is unique.

Proof. Suppose first ϕ ∈ F and ω = (ω(1), ω(2)) ∈ F 2. Then one can replace ω by
(ω(1) −ϕω(2), 0) without changing V ϕ +ω. So we may assume without loss of generality
ω = (β, 0) where β ∈ F .

In this case V ϕ + ω can be identified with{(
y(1), y(2)) ∈ F

2: y(1) = ϕy(2) + β
}
. (4.16)

In particular, for y = (y(1), y(2)) ∈ V ϕ + w, y is uniquely determined by y(2) and

N∗(y) =
s∏

i=1

((
(ϕi + Re ηi)y(2)

i + βi

)2 + (Im ηi)2
(
y
(2)
i

)2) =
s∏

i=1
fi
(
y
(2)
i

)
, (4.17)

with

fi(θ) =
(
ϕ2
i + 2ϕi Re ηi + |ηi|2

)
θ2 + 2(ϕi + Re ηi)βiθ + β2

i . (4.18)

It is clear that fi(θ) � 0 and has a minimum achieved at the unique point
− (ϕi+Re ηi)β

ϕ2
i+2ϕi Re ηi+|ηi|2 .
By Remark 2.4,

Re ηi = σi(η) + σi(η)
2 = σi(η) + σi(η̄)

2 = σi(η + η̄)
2

=
σi(TrK/F (η))

2 =
τi(TrK/F (η))

2

=
(TrK/F (η)

2

)
i

. (4.19)

For similar reasons, |ηi|2 = (NK/F (η))i.
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So for the element ξ = − (ϕ+ 1
2 TrK/F (η))

ϕ2+ϕ TrK/F (η)+NK/F (η) ∈ F and each i ∈ I, ξi is the unique
point at which fi achieves its minimum. The minimum can be easily verified to be

fi(ξi) =
( (NK/F (η) − 1

4 Tr2K/F (η))β2

ϕ2 + ϕTrK/F (η) + NK/F (η)

)
i

= (Im ηi)2β2
i

ϕ2
i + 2ϕRe ηi + |ηi|2

. (4.20)

As β ∈ F is rational, βi = 0 if and only if β = 0. Moreover for any i ∈ I, because
Im ηi �= 0 by (4.4), fi(ξi) = 0 if and only if β = 0.

It follows that the restriction of N∗ to V ϕ + ω has a minimum point at the point
y = (ϕξ + β, ξ). Moreover, if β �= 0, then the minimum values fi(ξi) are all positive;
and thus N∗(y) > 0 and the minimum point y is unique. Otherwise, β = 0 and V ϕ + ω

contains 0 by (4.16). This finishes the proof for ϕ ∈ F .
It remains to check what happens when the slope ϕ is ∞, in which case V ∞ + ω =

{(y(1), y(2)) ∈ F
2 : y(2) = ω(2)} and y is uniquely determined by y(1). Denote β =

ω(2) ∈ F . In this case, N∗(y) can be decomposed as
∏s

i=1 fi(y(1)), where fi is a new
polynomial given by fi(θ) = θ2 + 2(Re ηi)βiθ + |ηi|2β2

i . Similar analysis as in the ϕ ∈ F

case shows that fi has a unique minimum point ξi, which is the embedding of ξ =
−TrK/F (η) · β ∈ F into R by τi. The minimum value is fi(ξi) = (Im ηi)2β2

i . Again, if
β �= 0, then fi(ξi) > 0 for all i and y is the unique minimum point for the product form
N∗(y); otherwise 0 ∈ V ∞ + ω. �

Next, we study the localized Euclidean spectrum on each individual s-dimensional
homogeneous G-invariant subset.

For any subset A of K/OK , write

SpecK/OK
(A) =

{
mK/OK

(z): z ∈ A
}
. (4.21)

Proposition 4.8. Suppose r � 2 and L ⊂ K/OK is an s-dimensional homoge-
neous G-invariant subset, then SpecK/OK

(L) is a subset of Q and can be written as
{ν, μ1, μ2, . . .} where:

(1) ν = 0 if and only if 0 ∈ L;
(2) {y ∈ L: mK/OK

(y) = ν} is the union of the set of all irrational points in L and a
non-empty finite set of rational points;

(3) {y ∈ L: mK/OK
(y) = μn} is a finite non-empty set of rational points for all n � 1;

(4) μ1 > μ2 > · · · and limn→∞ μn = ν.

In particular, the proposition implies that every value from SpecK/OK
(L) is achieved

by at least one, but finitely many, rational point from L.
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Proof of Proposition 4.8. (1) Denote by ϕ the slope of L. Lemma 4.6 implies that
infz∈L mK/OK

(z) equals minω∈ΩL
inf{N∗(y): y ∈ V ϕ +ω} where ΩL ⊂ F 2 is a finite set

of rational point decided by L. By Lemma 4.7, for each ω ∈ ΩL, there is yω ∈ V ϕ+ω such
that N∗(yω) = min{N∗(y): y ∈ V ϕ + ω}. Hence infz∈L mK/OK

(z) = minω∈ΩL
N∗(yω).

Denote this minimum by ν.
There is at least one of the yω’s, which we denote by yν , such that N∗(yω) = ν.

Then zν = π�(πO2
F
(yν)) ∈ L by Lemma 4.6, and thus mK/OK

(zν) � ν by definition
and in consequence mK/OK

(zν) = ν. Note zν is rational, hence ν = mK/OK
(zν) ∈ Q by

Lemma 2.6(4).
By Lemma 4.7, ν = 0 if and only if yν = 0, or equivalently zν = 0. On the other hand

if L passes through 0 then clearly mK/OK
(0) = 0 is the minimum of mK/OK

on L. This
proves claim (1).

(2) Assume z ∈ L is irrational, then by Lemma 4.4(2), G.z is dense in L. It follows
from Lemma 2.6(3) that mK/OK

(z) = ν.
When ν = 0, the only rational point z ∈ L with mK/OK

(z) = 0 is 0. Assuming ν > 0,
we try to show that all rational points z ∈ L such that mK/OK

(z) = ν are contained in
a fixed finite set.

Let z be such a point. By Lemma 4.6, there exists ω ∈ ΩL such that

inf
{
N∗(y): y ∈ π−1

O2
F

(
π−1
� (G.z)

)
∩
(
V ϕ + ω

)}
= ν. (4.22)

Note for all y ∈ π−1
O2

F
(π−1

� (G.z)) ∩ (V ϕ + ω), πOK
(ρ−1(y)) = z and hence N∗(y) =

NK(ρ−1(y)) takes values from a discrete set of rational numbers as we have seen in the
proof of Lemma 2.6(4). Therefore, the infimum is actually a minimum. In other words,
there is y ∈ π−1

O2
F
(π−1

� (G.z)) such that the infimum in (4.22), which equals ν, is attained
at y. Since ν > 0, by Lemma 4.7, V ϕ + ω doesn’t contain 0 and y must be yω. Thus
z ∈ G.π�(πO2

F
(yω)). Because yω is rational, this is a finite G-orbit. So the finite set⋃

ω∈ΩL
G.π�(πO2

F
(yω)) covers all rational points z ∈ L at which mK/OK

equals ν. This
establishes part (2).

(3) There are infinitely many rational points in L. So it follows from the finiteness
proved above that SpecK/OK

contains values other than ν.
Therefore by upper semicontinuity, L�ν+δ = {z ∈ L: mK/OK

(z) � ν + δ} is a
proper non-empty closed subset of L for all sufficiently small positive δ. Moreover, it is
G-invariant by Lemma 2.6(1). By the remark at the beginning of part (2) above, L�ν+δ

consists of rational points. Moreover, L�ν+δ is finite. Indeed, suppose L�ν+δ is infinite
then it contains an s-dimensional homogeneous G-invariant subset L′ by Lemma 4.4(3).
However L′ must contain irrational points, which contradicts the rationality of points
from L�ν+δ. Hence we conclude that L�ν+δ is non-empty finite subset of rational points
in L for tiny δ.

For any μ ∈ SpecK/OK
\{ν}, we know μ > ν and denote by L=μ the set {z ∈ L:

mK/OK
(z) = μ}. Then L=μ is a subset of L�ν+δ for δ ∈ (0, μ − ν) and in consequence

consists of a finite number of rational points.
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(4) Observe that the collection of rational points in L, which is infinite, is the union
of {z ∈ L: z is rational, mK/OK

(z) = ν} and all the L=μ’s where μ ∈ SpecK/OK
\{ν}.

We have already seen that each of these sets is finite, therefore SpecK/OK
\{ν} must be

infinite.
Fix zμ ∈ L=μ, then μ = mK/OK

(zμ) ∈ Q by Lemma 2.6(4). As it was already verified
that ν ∈ Q, this asserts that

SpecK/OK
(L) ⊂ Q. (4.23)

Furthermore, the spectrum has no accumulation point greater than ν. Otherwise, for
sufficiently small δ, there are infinitely many values in SpecK/OK

(L) ∩ [ν + δ,∞). Since
each of these values correspond to at least one point in L�ν+δ, it follows that L�ν+δ is
infinite, which contradicts the previous conclusion.

In addition, recall that mK/OK
(z) � M(K) � 2−dDK by (1.1). So SpecK/OK

(L)\{ν}
is a bounded infinite subset of Q ∩ (ν,∞) and has no accumulation point other than ν.
The only possibility is a decreasing sequence approaching ν, which is part (4) of the
lemma. �
4.4. Proof of main results

We are now able to establish a complete characterization of the Euclidean and inho-
mogeneous spectra of K in case that r � 3 by putting pieces together.

Theorem 4.9. Suppose K is a CM number field of unit rank 3 or higher, then the inho-
mogeneous and Euclidean spectra coincide: Spec(K) = Spec(K). Moreover, Spec(K) is
a countable subset of Q and can be decomposed as {0} � (

⊔∞
n=1 Sn), where:

(1) For all n � 1, Sn can be written as {νn, μn,1, μn,2, . . .} such that:
• μn,1 > μn,2 > · · · ,
• limk→∞ μn,k = νn,
• limn→∞ νn = 0,
• νn > μn+1,1;

(2) For each μn,k, {z ∈ K/OK : mK/OK
(z) = μn,k} is a finite subset of rational points.

For each νn, {z ∈ K/OK : mK/OK
(z) = νn} is finite and non-empty. The set {z ∈

K/OK : z is irrational, mK/OK
(z) = νn} is the set of all irrational points in a

certain finite union of s-dimensional affine subtori where s = 1
2 degK.

Proof. Step 1. Construct η, ρ, F , Γ as in previous discussions. Then s = degF � 4 and
we will be able to make use of Proposition 4.5.

Let E be the collection of all s-dimensional homogeneous G-invariant subsets L ⊂
K/OK that avoid 0. For each L ∈ E , denote νL = min SpecK/OK

(L), which exists by
Proposition 4.8.
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We classify all points z ∈ K/OK into several categories:

(Ia) z = 0;
(Ib) z is irrational and is not contained in any L ∈ E ;
(IIa) z is irrational and belongs to some L ∈ E ;
(IIb) z is rational and there is L ∈ E , which may or may not contain z, such that

mK/OK
(z) = νL;

(III) z is a non-zero rational point that doesn’t fall into category (IIb).

These types obviously exhaust all points in K/OK .
First, if z is of type (Ia) or (Ib), then mK/OK

(z) = 0. This is obviously true if z = 0.
If z is of type (Ib), then by Proposition 4.5, G.z is either K/OK or an s-dimensional ho-
mogeneous G-invariant subset that contains 0. In both cases 0 ∈ G.z and by Lemma 2.6,
mK/OK

(z) vanishes.
Second, if z belongs to category (IIa) or (IIb) and is associated with L ∈ E , then

mK/OK
(z) = νL. For points of type (IIb) this is part of construction. If z is irrational

and z ∈ L, then this is a consequence of Lemma 4.8(2) instead.
Step 2. We show that for all δ > 0, there are only finitely many L ∈ E such that

νL > δ.
Indeed, by Lemma 2.6, for each of these L’s and z ∈ L, ‖z‖ > δ

1
d . In other words,

L fails to be δ
1
d -dense in K/OK , the claim follows from Lemma 4.4(4).

Step 3. We claim E is infinite. Indeed, there are infinitely many L ∈ E that have
slope ∞.

Since in K/OK the only s-dimensional homogeneous G-invariant subset with slope ∞
that contains 0 is π�(T∞). It is enough to show there are infinitely many s-dimensional
homogeneous G-invariant subsets that have slope ∞.

Each rational point w ∈ F/OF gives rise to an s-dimensional homogeneous
G-invariant subset {(z(1), z(2)): z(2) = w} of slope ∞ in (F/OF )2, and the correspondence
is one-to-one. Since F/OF contains infinitely many rational points, there are infinitely
many s-dimensional homogeneous G-invariant subsets of slope ∞ in (F/OF )2, each of
these projects to an s-dimensional homogeneous G-invariant subset of slope ∞ in K/OF

under π�. This establishes the claim, as π� is a finite covering map.
Step 4. The set A = {νL: L ∈ E} can be reordered into a strictly decreasing sequence

of rational numbers ν1 > ν2 > · · · that converges to 0.
To prove this it suffices to show A is a bounded infinite set of positive rational numbers

and has no accumulation point other than 0.
The boundedness follows from that of mK/OK

. The positivity and rationality are con-
firmed by Proposition 4.8. Hence it suffices to show A is infinite, and has no accumulation
point other than 0.

If A is finite, by infinity of E there must be an infinite family of L ∈ E such that the
corresponding νL’s are the same number, say ν.
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On the other hand, if A has a non-zero accumulation point, which must be positive
as each νL is, then there is a sequence of Ln’s such that νLn

’s are distinct and converge
to a positive value ν. Without loss of generality, one may assume νLn

> ν
2 > 0.

Thus in both cases, there are an infinity of different L’s from E such that νL > ν
2 > 0,

which is impossible by Step 2. This completes the proof of the claim.
Step 5. Write S1 = Spec(K) ∩ (ν1,∞) and Sn = Spec(K) ∩ (νn, νn−1) for n � 2. One

wants to show that each Sn can be written as a decreasing sequence of rational numbers
μn,1 > μn,2 > · · · that converges to νn, and that {z ∈ K/OK : mK/OK

(z) = μ} is a finite
set of rational points for all μ ∈ Sn.

In order to show the first half of the claim, it suffices to show Sn is a bounded infinite
set of rational numbers and has no accumulation point other than νn.

Boundedness is again easily guaranteed. By (2.17) and Step 1, any μ ∈ Sn can
be achieved by mK/OK

only at points of type (III), which are rational. Hence by
Lemma 2.6(4), Sn ⊂ Q.

Since νn ∈ A, there is L such that νn = νL. Lemma 4.8 asserts that there is a
decreasing sequence from SpecK/OK

(L) ⊂ Spec(K) whose limit is νn. In particular, this
implies the infiniteness of Sn.

So what remains to be done is to get a contradiction assuming that: either Sn has an
accumulation point ν′ which doesn’t equal νn, or the set {z ∈ K/OK : mK/OK

(z) = μ},
which we just showed consists of rational points, is infinite for some μ ∈ Sn.

In the first case, ν′ > νn and there are a sequence of rational points zk ∈ K/OK such
that the mK/OK

(zk)’s are all different and converge to ν′.
In the second case, let ν′ = μ. Then in both cases we have an infinite sequence of

distinct rational points zk such that limk→∞ mK/OK
(zk) = ν′. In particular, we may

assume mK/OK
(zk) > ν′

2 for all k.
By Lemma 2.6(4), the orbits G.zk don’t meet the neighborhood of radius (ν′

2 ) 1
d of the

origin, and hence Proposition 4.5(2) implies that the zk’s are contained in a finite union of
s-dimensional homogeneous G-invariant subsets. Without loss of generality, assume they
are all in the same s-dimensional homogeneous G-invariant subset L′. By Proposition 4.8,
when zk ∈ L′ are all different, the only possible limit of mK/OK

(zk) as k tends to ∞ is
νL′ and the mK/OK

(zk)’s are all greater than or equal to νL′ . Thus νL′ = ν′ > νn > 0.
On the other hand, ν′ < νn−1 if n � 2. Moreover, by Proposition 4.8(1), 0 /∈ L′; in other
words, L′ ∈ E . Hence ν′ = νL′ ∈ A. However, A contains no value in (νn, νn−1) when
n � 2, or in (ν1,∞). Therefore we obtain a contradiction and this completes Step 5.

Final Step. Part (1) of the theorem results from (2.17) and Steps 4 and 5. A corollary
to it is that Spec(K) ⊂ Q and is countable.

The first half of part (2) was already proved in Step 5. We now prove the second half
that involves the νn’s.

By definition of A, each νn is equal to νL for at least one L ∈ E and is
therefore achieved by mK/OK

at some rational point in L. Hence Yn = {z ∈
K/OK : mK/OK

(z) = νn} is non-empty. By Lemma 2.6(3), for all z ∈ Yn, the G-orbit
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of z avoids the neighborhood of radius ν
1
d
n around 0 ∈ K/OK . Hence we know from

Proposition 4.5(2) that Yn is covered by a finite union of s-dimensional homogeneous
G-invariant subsets. Moreover, by Proposition 4.8, mK/OK

can take value νn at only
finitely many rational points from any given s-dimensional homogeneous G-invariant
subset. Thus Yn is finite.

Regarding the set Y ′
n = {z ∈ K/OK : z irrational, mK/OK

(z) = νn}. By Step 1, it
consists only of irrational points of type (IIa) and is the set of irrational points from all
the L ∈ E such that νL = νn. Because each L is a finite union of s-dimensional affine
subtori, it suffices to notice there are only finitely many such L’s, which follows from
Step 2 by taking δ ∈ (0, νn). This completes the proof of part (2).

Last, part (2) of the theorem confirms that any value from the inhomogeneous spec-
trum Spec(K) can be achieved by mK/OK

at some z ∈ K/OK , and thus Spec(K) =
Spec(K) by (2.17) and (2.18). �

We are now at a position to prove Corollaries 1.5 and 1.6.

Proof of Corollary 1.5. The Euclidean minimum M(K) is exactly the value μ1,1 from
Theorem 4.9, therefore the desired isolatedness and finiteness follow directly from the
theorem. On the other hand, to show M(K) is attained, it suffices to prove that for all
z ∈ K/OK such that mK/OK

(z) = M(K), there is a lift x ∈ π−1
OK

(z) such that |NK(x)| =
M(K). Because such a point z must be rational by Theorem 4.9, Lemma 2.6(4) implies
that M(K) is attained in Spec(K). �
Proof of Corollary 1.6. For a detailed explanation of Cerri’s algorithm, see [Cer05, Chap-
ter 3]. In Proposition 4.25 of that thesis, Cerri showed the algorithm stops in finite time
for non-CM fields of unit rank at least 2. However, the only facts he used were that
M(K) is isolated in Spec(K) and that {z ∈ K/OK : mK/OK

(z) = M(K)} is a finite
set of rational points. Therefore thanks to Corollary 1.5, the same proof is valid for CM
fields of unit rank 3 or higher. �
Acknowledgments

We are indebted to Elon Lindenstrauss for helpful and motivating discussions. We
also thank Barak Weiss for useful comments. We are grateful to the anonymous referee
for careful reading and valuable opinions.

References

[BF06] E. Bayer Fluckiger, Upper bounds for Euclidean minima of algebraic number fields, J. Num-
ber Theory 121 (2) (2006) 305–323. MR2274907 (2008a:11139).

[BSD52] E.S. Barnes, H.P.F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic
forms. II, Acta Math. 88 (1952) 279–316. MR0054654 (14,956a).

[Bel04] K. Belabas, Topics in computational algebraic number theory, J. Théor. Nombres Bordeaux
16 (1) (2004) 19–63. MR2145572 (2006a:11174).



Author's personal copy

U. Shapira, Z. Wang / Journal of Number Theory 137 (2014) 93–121 121

[Ber83] D. Berend, Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280 (2) (1983) 509–532.
MR716835 (85b:11064).

[BLMV09] J. Bourgain, E. Lindenstrauss, P. Michel, A. Venkatesh, Some effective results for ×a × b,
Ergodic Theory Dynam. Systems 29 (6) (2009) 1705–1722. MR2563089 (2011e:37022).

[CL98] S. Cavallar, F. Lemmermeyer, The Euclidean algorithm in cubic number fields, in: Number
Theory, Eger, 996, de Gruyter, Berlin, 1998, pp. 123–146. MR1628838 (99e:11137).

[Cer05] J.-P. Cerri, Spectres euclidiens et inhomogènes des corps de nombres, PhD thesis, Université
Nancy I, 2005.

[Cer06] J.-P. Cerri, Inhomogeneous and Euclidean spectra of number fields with unit rank strictly
greater than 1, J. Reine Angew. Math. 592 (2006) 49–62.

[Cer07] J.-P. Cerri, Euclidean minima of totally real number fields: algorithmic determination, Math.
Comp. 76 (259) (2007) 1547–1575 (electronic). MR2299788 (2008d:11143).

[FJ10] F. Fontein, M. Jacobson, Rigorous computation of fundamental units in algebraic number
fields, preprint, 2010.

[GL87] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, 2nd ed., North-Holland Math. Li-
brary, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR893813 (88j:11034).

[HW79] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., The Clarendon
Press, Oxford University Press, New York, 1979. MR568909 (81i:10002).

[Lem95] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields, Expo. Math. 13 (5)
(1995) 385–416. MR1362867 (96i:11115).

[LW12] E. Lindenstrauss, Z. Wang, Topological self-joinings of Cartan actions by toral automor-
phisms, Duke Math. J. 165 (7) (2012) 1305–1350.

[Par75] C.J. Parry, Units of algebraic number fields, J. Number Theory 7 (4) (1975) 385–388.
[San91] J.W. Sands, Generalization of a theorem of Siegel, Acta Arith. 58 (1) (1991) 47–57.

MR1111089 (92c:11134).
[vdL85] F.J. van der Linden, Euclidean Rings with Two Infinite Primes, CWI Tract, vol. 15, Sticht-

ing Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1985.
MR787609 (87a:11107).

[Vou96] P. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1)
(1996) 81–95. MR1367580 (96j:11098).

[Wan11] Z. Wang, Quantitative density under higher rank abelian algebraic toral actions, Int. Math.
Res. Not. 2011 (16) (2011) 3744–3821.

[Was97] L.C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math., vol. 83,
Springer-Verlag, New York, 1997. MR1421575 (97h:11130).


