CLOSED ORBITS FOR THE DIAGONAL GROUP AND WELL-ROUNDED LATTICES

MICHAEL LEVIN, URI SHAPIRA, AND BARAK WEISS

Abstract

Curt McMullen showed that every compact orbit for the action of the diagonal group on the space of lattices contains a well-rounded lattice. We extend this to all closed orbits.

1. Introduction

Let $n \geq 2$ be an integer, let $G \stackrel{\text { def }}{=} \mathrm{SL}_{n}(\mathbb{R})$, let $A \subset G$ be the subgroup of diagonal matrices with positive entries and let $\mathcal{L}_{n} \xlongequal{\text { def }} G / \mathrm{SL}_{n}(\mathbb{Z})$ be the space of unimodular lattices in \mathbb{R}^{n}. The dynamics of the A-action on \mathcal{L}_{n} is a well-studied topic in view of applications to number theory. For instance, McMullen [McM05] studied this action in connection with his fundamental work on Minkowski's conjecture. A lattice $x \in \mathcal{L}_{n}$ is called well-rounded if the nonzero vectors of shortest length in x span \mathbb{R}^{n}, and McMullen proved that any compact A-orbit contains a wellrounded lattice. We show:

Theorem 1.1. Suppose $x \in \mathcal{L}_{n}$ and $A x$ is closed. Then $A x$ contains a well-rounded lattice.

The proof of Theorem 1.1 closely follows McMullen's strategy; namely McMullen deduced theorem 1.1 from a covering result regarding covers of the torus \mathbb{T}^{n}, while we deduce it from a different covering result.

McMullen also showed that any bounded A-orbit contains a wellrounded lattice in its closure. It is natural to inquire whether this result could be strengthened, by removing either of the italicized phrases. As we show in Proposition 2.2, this strengthening holds for almost every A-orbit, but whether or not it holds for every A-orbit is an open question. Our result could be seen as a partial step in this direction. Our proofs rely on results of Tomanov and the authors [TW03, SWb] classifying closed orbits for the A-action, as well as a covering result which is of independent interest. For another perspective on this and related questions, see [PS].
1.1. Acknowledgements. A preliminary version of this paper appeared on arXiv as a chapter of the manuscript [SWa]. We thank

Roman Karasev for enlightening remarks. The authors' work was supported by ERC starter grant DLGAPS 279893 and ISF grants 190/08, $357 / 13$, and the Chaya Fellowship.

2. Preliminaries

2.1. The behavior of almost every lattice. Let $\mathcal{W} \mathcal{R} \subset \mathcal{L}_{n}$ denote the set of well-rounded lattices. Suppose $x \in \mathcal{W} \mathcal{R}$ and v_{1}, \ldots, v_{n} are linearly independent shortest vectors of x. We will say that x is a generic well-rounded lattice if for any $v \in x \backslash\left\{0, \pm v_{1}, \ldots, \pm v_{n}\right\},\|v\|>$ $\left\|v_{i}\right\|$. For instance the lattice \mathbb{Z}^{n} is generic well-rounded. We have:

Proposition 2.1. If $x \in \mathcal{L}_{n}$ is a generic well-rounded lattice, then there is an open $\mathcal{U} \subset \mathcal{L}_{n}$ such that $\mathcal{W} \mathcal{R} \cap \mathcal{U}$ is a submanifold of \mathcal{L}_{n} of codimension $n-1$.

Proof. The fact that x is generic implies that there is a neighborhood \mathcal{V} of the identity in G, such that for $g \in \mathcal{V}$, any shortest vector of $g x$ is $g v_{i}$ for some i. Making \mathcal{V} smaller if necessary we obtain that the multiplication map $g \mapsto g x$ is a homeomorphism of \mathcal{V} onto $\mathcal{U}=\mathcal{V} x$, and we obtain that $\mathcal{W} \mathcal{R} \cap \mathcal{U}=\left\{g x:\left\|g v_{1}\right\|=\cdots=\left\|g v_{n}\right\|\right\}$. Since $\{g \in G$: $\left.\left\|g v_{1}\right\|=\cdots=\left\|g v_{n}\right\|\right\}$ is a subvariety of G cut out by $n-1$ independent equations, $\mathcal{W R} \cap \mathcal{U}$ is a submanifold of codimension $n-1$.

Proposition 2.2. For almost every $x \in \mathcal{L}_{n}$, the orbit $A x$ contains a well-rounded lattice.

Proof. Let x_{0} be a generic well-rounded lattice, with shortest vectors v_{1}, \ldots, v_{n}, and let \mathcal{U} be the neighborhood of x_{0} as in Proposition 2.1. Suppose in addition that derivatives of the maps $a \mapsto\left\|a v_{i}\right\|, \quad i=$ $1, \ldots, n-1$ are linearly independent (seen as linear functionals on the Lie algebra \mathfrak{a}). A simple computation shows that this condition is satisfied for the lattice $x_{0}=\mathbb{Z}^{n}$. This condition implies that the orbit $A x_{0}$ and the manifold $\mathcal{W} \mathcal{R} \cap \mathcal{U}$ intersect transversally at x_{0}. In particular there is a neighborhood $\mathcal{U}_{0} \subset \mathcal{U}$ such that if $x \in \mathcal{U}_{0}$ then there is $a \in A$ such that $a x \in \mathcal{W} \mathcal{R}$. Thus any A-orbit entering \mathcal{U}_{0} contains a well-rounded lattice. By Moore's ergodicity theorem (see e.g. [Zim84]) the A-action on \mathcal{L}_{n} is ergodic, and hence almost every A-orbit enters \mathcal{U}_{0}.
2.2. The structure of closed orbits. The following statement was proved by the authors in [SWb, Cor. 5.8], using earlier results of [TW03].

Proposition 2.3. Suppose $A x$ is closed. Then there is a decomposition $A=T_{1} \times T_{2}$ and a direct sum decomposition $\mathbb{R}^{n}=\bigoplus_{1}^{d} V_{i}$ such that the following hold:

- Each V_{i} is spanned by some of the standard basis vectors.
- T_{1} is the group of linear transformations which act on each V_{i} by a homothety, preserving Lebesgue measure on \mathbb{R}^{n}. In particular $\operatorname{dim} T_{1}=d-1$.
- T_{2} is the group of diagonal matrices whose restriction to each V_{i} has determinant 1.
- $T_{2} x$ is compact and $T_{1} x$ is divergent; i.e. $A x \cong T_{1} \times T_{2} /\left(T_{2}\right)_{x}$, where $\left(T_{2}\right)_{x} \stackrel{\text { def }}{=}\left\{a \in T_{2}: a x=x\right\}$ is cocompact in T_{2}.
- Setting $\Lambda_{i} \stackrel{\text { def }}{=} V_{i} \cap x$, each Λ_{i} is a lattice in V_{i}, so that $\bigoplus \Lambda_{i}$ is of finite index in x.
2.3. Some preparations. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ denote the standard basis of \mathbb{R}^{n}. For $1 \leq d \leq n$, let

$$
\mathbf{I}_{d}^{n} \stackrel{\text { def }}{=}\left\{1 \leq i_{1}<\cdots<i_{d} \leq n\right\}
$$

denote the collection of multi-indices of length d and for $J=\left(i_{1}, \ldots, i_{d}\right) \in$ \mathbf{I}_{d}^{n} let $\mathbf{e}_{J} \stackrel{\text { def }}{=} \mathbf{e}_{i_{1}} \wedge \cdots \wedge \mathbf{e}_{i_{d}}$ be the corresponding vector in the d-th exterior power of \mathbb{R}^{n}. We equip $\bigwedge^{d} \mathbb{R}^{n}$ with the inner product with respect to which $\left\{\mathbf{e}_{J}\right\}$ is an orthonormal basis, and denote by $\mathcal{E}_{d, n}$ the quotient of $\bigwedge^{d} \mathbb{R}^{n}$ by the equivalence relation $w \sim-w$. Note that the product of an element of $\mathcal{E}_{d, n}$ with a positive scalar is well-defined. We will (somewhat imprecisely) refer to elements of $\mathcal{E}_{d, n}$ as vectors. Given a subspace $L \subset \mathbb{R}^{n}$ with $\operatorname{dim} L=d$, we denote by $w_{L} \in \mathcal{E}_{d, n}$ the image of a vector of norm one in $\bigwedge^{d} L$. If $\Lambda \subset \mathbb{R}^{n}$ is a discrete subgroup of rank d, we denote by $w_{\Lambda} \in \mathcal{E}_{d, n}$ the image of the vector $v_{1} \wedge \cdots \wedge v_{d}$, where $\left\{v_{i}\right\}_{1}^{d}$ forms a basis for Λ. The reader may verify that these vectors are well-defined (i.e. independent of the choice of the v_{j}) and satisfy $w_{\Lambda}=|\Lambda| w_{L}$ where $L=\operatorname{span} \Lambda$ and $|\Lambda|$ is the covolume of Λ in L, with respect to the volume form induced by the standard inner product on \mathbb{R}^{n}. We denote the natural action of G on $\mathcal{E}_{d, n}$ arising from the d-th exterior power of the linear action on \mathbb{R}^{n}, by $(g, w) \mapsto g w$. Given a subspace $L \subset \mathbb{R}^{n}$ and a discrete subgroup Λ we set

$$
A_{L} \stackrel{\text { def }}{=}\left\{a \in A: a w_{L}=w_{L}\right\} \text { and } A_{\Lambda} \stackrel{\text { def }}{=}\left\{a \in A: a w_{\Lambda}=w_{\Lambda}\right\} .
$$

Note that $A_{L}=A_{\Lambda}$ when Λ spans L. Note also that the requirement $a w_{L}=w_{L}$ is equivalent to saying that $a L=L$ and $\operatorname{det}\left(\left.a\right|_{L}\right)=1$. Given a flag

$$
\begin{equation*}
\mathscr{F}=\left\{0 \varsubsetneqq L_{1} \varsubsetneqq \cdots \nsubseteq L_{k} \nsubseteq \mathbb{R}^{n}\right\} \tag{2.1}
\end{equation*}
$$

(not necessarily full), let $A_{\mathscr{F}} \stackrel{\text { def }}{=} \bigcap_{i} A_{L_{i}}$. The support of an element $w \in \mathcal{E}_{d, n}$ is the subset of \mathbf{I}_{d}^{n} for which the corresponding coefficients of an element of $\bigwedge^{d} \mathbb{R}^{n}$ representing w are nonzero, and we write $\operatorname{supp}(L)$ or $\operatorname{supp}(\Lambda)$ for the supports of w_{L} and w_{Λ}. For $J=\left(i_{1}<\cdots<i_{d}\right) \in \mathbf{I}_{d}^{n}$, set $\mathbb{R}^{J} \stackrel{\text { def }}{=} \operatorname{span}\left(\mathbf{e}_{i_{j}}\right)$ and define the multiplicative characters

$$
\chi_{J}: A \rightarrow \mathbb{R}^{*}, \chi_{J}(a) \stackrel{\text { def }}{=} \operatorname{det}\left(\left.a\right|_{\mathbb{R}^{J}}\right)
$$

Then for any subspace $L \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
A_{L}=\bigcap_{J \in \operatorname{supp}(L)} \operatorname{ker} \chi_{J} \tag{2.2}
\end{equation*}
$$

(and similarly for discrete subgroups Λ).
We fix an invariant metric \mathbf{d} on A. We will need the following lemma (cf. [McM05, Theorem 6.1]):

Lemma 2.4. Let $T \subset A$ be a closed subgroup and let $x \in \mathcal{L}_{n}$ be a lattice with a compact T-orbit. Then for any $C>0$ there exists $R>0$ such that for any collection $\left\{\Lambda_{i}\right\}$ of subgroups of x, there exists $b \in A$ such that

$$
\begin{equation*}
\left\{a \in T: \forall i,\left\|a w_{\Lambda_{i}}\right\| \leq C\right\} \subset\left\{a \in A: \mathbf{d}\left(a, b\left(\cap_{i} A_{\Lambda_{i}}\right)\right) \leq R\right\} \tag{2.3}
\end{equation*}
$$

Proof. In the argument below we will sometimes identify A with its Lie algebra \mathfrak{a} via the exponential map, and think of the subgroups A_{Λ} as subspaces. By (2.2) only finitely many subspaces arise as A_{Λ}. In particular, given a collection of discrete subgroups $\left\{\Lambda_{i}\right\}$, the angles between the spaces they span (if nonzero) are bounded below, by a bound which is independent of the $\left\{\Lambda_{i}\right\}$. Therefore there exists a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ with $\psi(R) \rightarrow_{R \rightarrow \infty} \infty$, such that

$$
\begin{align*}
& \left\{a \in A: \forall J \in \cup_{i} \operatorname{supp}\left(w_{\Lambda_{i}}\right), \psi(R)^{-1} \leq \chi_{J}(a) \leq \psi(R)\right\} \subset \tag{2.4}\\
& \left\{a \in A: \mathbf{d}\left(a, \cap_{i} A_{\Lambda_{i}}\right) \leq R\right\}
\end{align*}
$$

Since $T x$ is compact, there exists a compact subset $\Omega \subset T$ such that for any $a \in T$ there exists $b=b(a) \in T$ satisfying $b x=x$ and $b^{-1} a \in \Omega$. It follows that there exists $M \geq 1$ such that:
(I) for any subspace $L,\left\|b w_{L}\right\| \leq M\left\|a w_{L}\right\|$.
(II) for any multi-index $J, \chi_{J}\left(b a^{-1}\right) \leq M$.

Given $C>0$, let $C^{\prime} \stackrel{\text { def }}{=} M C$ and consider the finite set

$$
\mathscr{S} \stackrel{\text { def }}{=}\left\{\Lambda \subset x:\left\|w_{\Lambda}\right\| \leq C^{\prime}\right\}
$$

For any $\Lambda \in \mathscr{S}$ write $w_{\Lambda}=\sum_{J \in \operatorname{supp}\left(w_{\Lambda}\right)} \alpha_{J}(\Lambda) \mathbf{e}_{J}$. Let

$$
0<\varepsilon<\min \left\{\left|\alpha_{J}(\Lambda)\right|: \Lambda \in \mathscr{S}, J \in \operatorname{supp}\left(w_{\Lambda}\right)\right\}
$$

and choose R large enough so that $\psi(R)>C^{\prime} / \varepsilon$. We claim that for any $\left\{\Lambda_{i}\right\} \subset \mathscr{S}$,

$$
\begin{equation*}
\left\{a \in T: \forall i\left\|a w_{\Lambda_{i}}\right\| \leq C\right\} \subset\left\{a \in T: \mathbf{d}\left(a, \cap_{i} A_{\Lambda_{i}}\right) \leq R\right\} \tag{2.5}
\end{equation*}
$$

To prove this claim, suppose a is an element on the left hand side of (2.5). By (2.4) it is enough to show that for any $J \in \cup_{i} \operatorname{supp}\left(\Lambda_{i}\right)$ we have $\psi(R)^{-1} \leq \chi_{J}(a) \leq \psi(R)$. Since the coefficient of \mathbf{e}_{J} in the expansion of $a w_{\Lambda_{i}}$ is $\chi_{J}(a) \alpha_{J}\left(\Lambda_{i}\right)$ and since $\left\|a w_{\Lambda_{i}}\right\| \leq C$, we have

$$
\chi_{J}(a) \leq \frac{C}{\left|\alpha_{J}\left(\Lambda_{i}\right)\right|} \leq \frac{C}{\varepsilon} \leq \psi(R)
$$

On the other hand, letting $b=b(a)$ we have $b \Lambda_{i} \in \mathscr{S}$ from (I), and

$$
\begin{aligned}
\varepsilon \leq\left|\alpha_{J}\left(b \Lambda_{i}\right)\right| & =\chi_{J}(b)\left|\alpha_{J}\left(\Lambda_{i}\right)\right| \Longrightarrow \chi_{J}\left(b^{-1}\right) \leq C / \varepsilon \\
& \stackrel{(\mathrm{II})}{\Longrightarrow} \chi_{J}\left(a^{-1}\right)=\chi_{J}\left(a^{-1} b\right) \chi_{J}\left(b^{-1}\right) \leq C^{\prime} / \varepsilon \leq \psi(R),
\end{aligned}
$$

which completes the proof of (2.5).
Let $\left\{\Lambda_{i}\right\}$ be any collection of subgroups of x and assume that the set on the left hand side of (2.3) is non-empty. That is, there exists $a_{0} \in T$ such that for all $i,\left\|a_{0} w_{\Lambda_{i}}\right\| \leq C$. Let $b=b\left(a_{0}\right) \in T$, and set $\Lambda_{i}^{\prime} \stackrel{\text { def }}{=} b \Lambda_{i}$. It follows that $\left\{\Lambda_{i}^{\prime}\right\} \subset \mathscr{S}$ and so

$$
\begin{aligned}
\left\{a \in T: \forall i\left\|a w_{\Lambda_{i}}\right\| \leq C\right\} & =b\left\{a \in T: \forall i\left\|a w_{\Lambda_{i}^{\prime}}\right\| \leq C\right\} \\
& \stackrel{(2.5)}{\subset} b\left\{a \in T: \mathbf{d}\left(a, \cap_{i} A_{\Lambda_{i}^{\prime}}\right) \leq R\right\} \\
& =\left\{a \in T: \mathbf{d}\left(a, b\left(\cap_{i} A_{\Lambda_{i}}\right)\right) \leq R\right\},
\end{aligned}
$$

where in the last equality we used the fact that $A_{\Lambda_{i}^{\prime}}=A_{\Lambda_{i}}$ because A is commutative.

Lemma 2.5. Let \mathscr{F} be a flag of length k as in (2.1) and let $A_{\mathscr{F}}$ be its stabilizer. Then $A_{\mathscr{F}}$ is of co-dimension $\geq k$ in A.
Proof. Given a nested sequence of multi-indices $J_{1} \nsubseteq \cdots \nsubseteq J_{k}$ it is clear that the subgroup

$$
\bigcap_{i=1}^{k} \operatorname{ker} \chi_{J_{i}}
$$

is of co-dimension k in A. In light of (2.2), it suffices to prove the following claim:
Let \mathscr{F} be a flag as in (2.1) with $d_{i} \stackrel{\text { def }}{=} \operatorname{dim} L_{i}$. Then there is a nested sequence of multi-indices $J_{i} \in \boldsymbol{I}_{d_{i}}^{n}$ such that $J_{i} \in \operatorname{supp}\left(L_{i}\right)$.

In proving the claim we will assume with no loss of generality that the flag is complete. Let v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n} such that $L_{i}=$
span $\left\{v_{j}\right\}_{j=1}^{i}$ for $i=1, \ldots, n-1$. Let S be the $n \times n$ matrix whose columns are v_{1}, \ldots, v_{n}. Given a multi-index J of length $|J|$, we denote by S_{J} the square matrix of dimension $|J|$ obtained from S by deleting the last $n-|J|$ columns and the rows corresponding to the indices not in J. Note that with this notation, each $w_{L_{d}}$ is the image in $\mathcal{E}_{d, n}$ of a vector proportional to

$$
\begin{equation*}
v_{1} \wedge \cdots \wedge v_{d}=\sum_{J \in \mathbf{I}_{d}^{n}}\left(\operatorname{det} S_{J}\right) \mathbf{e}_{J} \tag{2.6}
\end{equation*}
$$

In particular, $J \in \operatorname{supp}\left(L_{d}\right)$ if and only if $\operatorname{det} S_{J} \neq 0$.
Proceeding inductively in reverse, we construct the nested sequence J_{d} by induction on $d=n, \ldots, 1$. Let $J_{n}=\{1, \ldots, n\}$ so that $S=S_{J_{n}}$. Suppose we are given multi-indices $J_{n} \supset \cdots \supset J_{d+1}$ such that $J_{i} \in$ $\operatorname{supp}\left(w_{L_{i}}\right)$ for $i=n, \ldots, d+1$. We want to define now a multi index $J_{d} \in \operatorname{supp}\left(w_{L_{d}}\right)$ which is contained in J_{d+1}. By (2.6), $\operatorname{det} S_{J_{d+1}} \neq 0$. When computing $\operatorname{det} S_{J_{d+1}}$ by expanding the last column we express $\operatorname{det} S_{j_{d+1}}$ as a linear combination of $\left\{\operatorname{det} S_{J}: J \subset J_{d+1},|J|=d\right\}$. We conclude that there must exist at least one multi-index $J_{d} \subset J_{d+1}$ for which $\operatorname{det} S_{J_{d}} \neq 0$. In turn, by (2.6) this means that $J_{d} \in \operatorname{supp}\left(w_{L_{d}}\right)$. This finishes the proof of the claim.

3. Reduction to a topological statement

We will require the following topological result which generalizes Theorem 5.1 of [McM05]. Let s, t be non-negative integers, and let Δ denote the s-dimensional simplex, which we think of concretely as $\operatorname{conv}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{s+1}\right)$, where the \mathbf{e}_{j} are the standard basis vectors in \mathbb{R}^{s+1}. We will discuss covers of $M \stackrel{\text { def }}{=} \Delta \times \mathbb{R}^{t}$, and give conditions guaranteeing that such a cover must cover a point at least $s+t+1$ times. For $j=1, \ldots, s+1$ let F_{j} be the face of Δ opposite to \mathbf{e}_{j}, that is $F_{j}=$ $\operatorname{conv}\left(\mathbf{e}_{i}: i \neq j\right)$. Also let $M_{j} \stackrel{\text { def }}{=} F_{j} \times \mathbb{R}^{t}$ be the corresponding subset of M. Given $R>0$ and a positive integer k, we say that a subset $U \subset \mathbb{R}^{t}$ is (R, k)-almost affine if it is contained in an R-neighborhood of a k-dimensional affine subspace of \mathbb{R}^{t}.

Theorem 3.1. Suppose that \mathcal{U} is a cover of M by open sets satisfying the following conditions:
(i) For any connected component U of any element of \mathcal{U} there exists j such that $U \cap M_{j}=\varnothing$.
(ii) There is R so that for any connected component U of the intersection of $k \leq s+t$ distinct elements of \mathcal{U}, the projection of U to \mathbb{R}^{t} is $(R, s+t-k)$-almost affine.

Then there is a point of M which is covered at least $s+t+1$ times.
The case $s=0$ is McMullen's result, and the case $t=0$ is known as the Knaster-Kuratowski-Mazurkiewicz theorem (see e.g. [Kar]). Note that hypothesis (ii) is trivially satisfied when $k \leq s$, since any subset of \mathbb{R}^{t} is $(1, t)$-almost affine. We will prove Theorem 3.1 in $\S 4$. In this section we use it to prove Theorem 1.1.

Given a lattice $x \in \mathcal{L}_{n}$ let $\alpha(x)$ denote the length of a shortest nonzero vector in x. Given $\delta>0$ let

$$
\begin{aligned}
\operatorname{Min}_{\delta}(x) & \stackrel{\text { def }}{=}\{v \in x \backslash\{0\}:\|v\|<(1+\delta) \alpha(x)\} \\
\mathbf{V}_{\delta}(x) & \stackrel{\text { def }}{=} \operatorname{span} \operatorname{Min}_{\delta}(x) \\
\operatorname{dim}_{\delta}(x) & \stackrel{\text { def }}{=} \operatorname{dim} \mathbf{V}_{\delta}(x)
\end{aligned}
$$

Finally, for $\varepsilon>0$, let $\mathcal{U}^{(\varepsilon)}=\left\{U_{j}^{(\varepsilon)}\right\}_{j=1}^{n}$ be the collection of open subsets of A defined by
$U_{j}=U_{j}^{(\varepsilon)} \stackrel{\text { def }}{=}\left\{a \in A\right.$: for all δ in a neighborhood of $\left.j \varepsilon, \operatorname{dim}_{\delta}(a x)=j\right\}$.
Note that these sets depend on $x \in \mathcal{L}_{n}$ but in our application x will be considered fixed and so we suppress this dependence from our notation. By [McM05, Thm. 7.2], $\mathcal{U}^{(\varepsilon)}$ is an open cover of A.
Lemma 3.2. For any n there is a compact $K \subset \mathcal{L}_{n}$ such that if $x \in \mathcal{L}_{n}$ and $a \in U_{n}^{(\varepsilon)}$ for $\varepsilon<1$, then $a x \in K$.
Proof. If $a \in U_{n}^{(\varepsilon)}$ and $\varepsilon<1$ then $a x$ has n linearly independent vectors of length at most $(n+1) \alpha(a x)$. Since $a x$ is unimodular, there is a constant C (depending only on n) such that $\alpha(x) \geq C$. The set $K \xlongequal{\text { def }}\left\{x \in \mathcal{L}_{n}: \alpha(x) \geq C\right\}$ is compact by Mahler's compactness criterion, and fulfills the requirements.
Proof of Theorem 1.1. It suffices to show that for each $\varepsilon>0, U_{n}^{(\varepsilon)} \neq \varnothing$. Indeed, if this is the case, then letting ε_{j} be a sequence of positive numbers such that $\varepsilon_{j} \rightarrow 0$, for each j, we let $a_{j} \in U_{n}^{\left(\varepsilon_{j}\right)}$. By Lemma 3.2, the lattices $a_{j} x$ belong to a fixed compact set K, so there is subsequence converging to some $x_{0} \in K$; we continue to denote the subsequence by $\left(a_{j} x\right)$. For each j there are linearly independent $v_{1}^{(j)}, \ldots, v_{n}^{(j)} \in x$ such that $\left\|a v_{i}^{(j)}\right\| \leq\left(1+\varepsilon_{j}\right) \alpha\left(a_{j} x\right)$. The angle between each $a_{j} v_{i}^{(j)}$ and the space spanned by the other $a_{j} v_{\ell}^{(j)}, \ell \neq i$ is bounded from below independently of j. Passing to a subsequence we can assume that each $a_{j} v_{i}^{(j)}$ converges to a nonzero vector $v_{i} \in x_{0}$. Since α is a continuous
function, the v_{i} all have length equal to $\alpha\left(x_{0}\right)$, and by the lower bound on the angles between them, they are linearly independent; that is, x_{0} is well-rounded.

In order to prove that $U_{n}^{(\varepsilon)}$ is non-empty, we will apply Theorem 3.1. The first step is to find a decomposition $A \simeq \mathbb{R}^{n-1}=\mathbb{R}^{s} \times \mathbb{R}^{t}$ and a simplex $\Delta \subset \mathbb{R}^{s}$, so that the restriction of the cover to $\Delta \times \mathbb{R}^{t}$ satisfies the two hypotheses of Theorem 3.1.

Let $A=T_{1} \times T_{2}$ and $\mathbb{R}^{n}=\bigoplus_{1}^{d} V_{i}$ be the decompositions as in Proposition 2.3, and let $s \stackrel{\text { def }}{=} \operatorname{dim} T_{1}=d-1$. For $a \in T_{1}$ we denote by $\chi_{i}(a)$ the number satisfying $a v=e^{\chi_{i}(a)} v$ for all $v \in V_{i}$. Thus each χ_{i} is a homomorphism from T_{1} to the additive group of real numbers. The mapping $a \mapsto \bigoplus_{i} \chi_{i}(a) \operatorname{Id}_{V_{i}}$, where $\operatorname{Id}_{V_{i}}$ is the identity map on V_{i}, is nothing but the logarithmic map of T_{1} and it endows T_{1} with the structure of a vector space. In particular we can discuss the convex hull of subsets of T_{1}. For each ρ we let

$$
\Delta_{\rho} \stackrel{\text { def }}{=}\left\{a \in T_{1}: \max _{i} \chi_{i}(a) \leq \rho\right\} .
$$

Then $\Delta_{\rho}=\operatorname{conv}\left(b_{1}, \ldots, b_{d}\right)$ where b_{i} is the diagonal matrix acting on each $V_{j}, j \neq i$ by multiplication by e^{ρ}, and contracting V_{i} by the appropriate constant ensuring that $\operatorname{det} b_{i}=1$.

Let $P_{i}: \mathbb{R}^{n} \rightarrow V_{i}$ be the natural projection associated with the decomposition $\mathbb{R}^{n}=\bigoplus V_{i}$. Since $\bigoplus \Lambda_{j}$ is of finite index in x, each $P_{i}(x)$ contains Λ_{i} as a subgroup of finite index and hence is discrete in V_{i}. Moreover, the orbit $T_{2} x$ is compact, so for each $a \in T_{2}$ there is a^{\prime} belonging to a bounded subset of T_{2} such that $a x=a^{\prime} x$. This implies that there is $\eta>0$ such that for any i and any $a \in T_{2}$, if $v \in a x$ and $P_{i}(v) \neq 0$ then $\left\|P_{i}(v)\right\| \geq \eta$. Let $C>0$ be large enough so that $\alpha\left(x^{\prime}\right) \leq C$ for any $x^{\prime} \in \mathcal{L}_{n}$. Let ρ be large enough so that

$$
\begin{equation*}
e^{\rho} \eta>2 C \tag{3.2}
\end{equation*}
$$

We restrict the covers $\mathcal{U}^{(\varepsilon)}$ (where $\varepsilon \in(0,1 / n)$) to $\Delta_{\rho} \times T_{2}$ and apply Theorem 3.1 with $t \stackrel{\text { def }}{=} \operatorname{dim} T_{2}=n-d$.

Let U be a connected subset of $U_{k}^{(\varepsilon)} \in \mathcal{U}^{(\varepsilon)}$. By [McM05, $\left.\S 7\right]$, the k dimensional subspace $L \stackrel{\text { def }}{=} a^{-1} \mathbf{V}_{k \varepsilon}(a x)$ as well as the discrete subgroup $\Lambda \stackrel{\text { def }}{=} L \cap x$ are independent of the choice of $a \in U$. By definition of $U_{k}^{(\varepsilon)}$, for any $a \in U, a \Lambda$ contains k vectors $v_{i}=v_{i}(a), i=1, \ldots, k$ which span $a L$ and satisfy

$$
\begin{equation*}
\left\|v_{i}\right\| \in[r,(1+k \varepsilon) r], \quad \text { where } r \stackrel{\text { def }}{=} \alpha(a x) \tag{3.3}
\end{equation*}
$$

In order to verify hypothesis (i) of Theorem 3.1, we need to show that there is at least one j for which $U \cap M_{j}=\varnothing$. Since ker $P_{1} \cap \cdots \cap$ ker $P_{d}=$ $\{0\}$ and $\operatorname{dim} L=k \geq 1$, it suffices to show that whenever $U \cap M_{j} \neq \varnothing$, $L \subset \operatorname{ker} P_{j}$. The face F_{j} of Δ_{ρ} consists of those elements $a_{1} \in T_{1}$ which expand vectors in V_{j} by a factor of e^{ρ}. If $U \cap M_{j} \neq \varnothing$ then there is $a \in T_{2}, a_{1} \in F_{j}$ so that $a_{1} a \in U$. Now (3.2), (3.3) and the choice of η and C ensure that the vectors $v_{i}=v_{i}\left(a_{1} a\right)$ satisfy $P_{j}\left(v_{i}\right)=0$. Therefore $L \subset \operatorname{ker} P_{j}$.

It remains to verify hypothesis (ii) of Theorem 3.1. Let U be a connected subset of an intersection $U_{i_{1}} \cap \cdots \cap U_{i_{k}} \cap\left(\Delta_{\rho} \times T_{2}\right)$ and let $L_{i_{j}} \stackrel{\text { def }}{=} a^{-1} \mathbf{V}_{i_{j} \varepsilon}(a x)$ and $\Lambda_{i_{j}} \stackrel{\text { def }}{=} L_{i_{j}} \cap x$. As remarked above, $L_{i_{j}}, \Lambda_{i_{j}}$ are independent of $a \in U$.

By the definition of the $L_{i_{j}}$'s we have that $L_{i_{j}} \nsubseteq L_{i_{j+1}}$ and so they form a flag \mathscr{F} as in (2.1). Lemma 2.5 applies and we deduce that

$$
\begin{equation*}
A_{\mathscr{F}}=\cap_{j=1}^{k} A_{L_{i_{j}}} \text { is of co-dimension } \geq k \text { in } A . \tag{3.4}
\end{equation*}
$$

For each $a \in U$ and each j let $\left\{v_{\ell}^{(j)}(a)\right\} \in a \Lambda_{i_{j}}$ be the vectors spanning $a L_{i_{j}}$ which satisfy (3.3). Let $u_{\ell}^{(j)}(a) \stackrel{\text { def }}{=} a^{-1} v_{\ell}^{(j)} \in \Lambda_{i_{j}}$. Observe that:
(a) $\operatorname{span}_{\mathbb{Z}}\left\{u_{\ell}^{(j)}(a)\right\}$ is of finite index in $\Lambda_{i_{j}}$ and in particular, $u_{i_{1}}^{(j)}(a) \wedge$ $\cdots \wedge u_{i_{j}}^{(j)}(a)$ is an integer multiple of $\pm w_{\Lambda_{i_{j}}}$. As a consequence $\left\|a w_{\Lambda_{i_{j}}}\right\| \leq\left\|v_{i_{1}}^{(j)}(a) \wedge \cdots \wedge v_{i_{j}}^{(j)}(a)\right\|$.
(b) Because of (3.3) we have that $\left\|v_{i_{1}}^{(j)}(a) \wedge \cdots \wedge v_{i_{j}}^{(j)}(a)\right\|<C$ for some constant C depending on n alone.
It follows from (a),(b) and Lemma 2.4 that there exist $R>0$ and an element $b \in T_{2}$ so that
$U \subset \Delta_{\rho} \times\left\{a \in T_{2}: \forall i_{j},\left\|a w_{\Lambda_{i_{j}}}\right\|<C\right\} \subset T_{1} \times\left\{a \in T_{2}: \mathbf{d}\left(a, b A_{\mathscr{F}}\right) \leq R\right\}$.
By (3.4) we deduce that if $p_{2}: A \rightarrow T_{2}$ is the projection associated with the decomposition $A=T_{1} \times T_{2}$ then $p_{2}(U)$ is $\left(R^{\prime}, s+t-k\right)$-almost affine, where R^{\prime} depends only on R, ρ. This concludes the proof.

4. Proof of Theorem 3.1

In this section we will prove Theorem 3.1. Our proof gives an elementary alternative proof of McMullen's result. Moreover it shows that McMullen's hypothesis that the inradius of the cover is positive, is not essential.

Below X will denote a second countable locally connected metric space. We will use calligraphic letters like \mathcal{U} for collections of sets.

The symbol $\operatorname{mesh}(\mathcal{A})$ will denote the supremum of the diameters of the sets in \mathcal{A}. The symbol $\operatorname{Leb}(\mathcal{A})$ will denote the Lebesgue number of a cover \mathcal{A}, i.e. the supremum of all numbers r such that each ball of radius r in X is contained in some element of \mathcal{A}. The symbol $\operatorname{ord}(\mathcal{A})$ will denote the largest number of distinct elements of \mathcal{A} with non-empty intersection.

Definition 4.1. Let $\left\{X_{j}\right\}_{j \in \mathscr{F}}$ be a collection of subsets of X. We consider each X_{j} as an independent metric space with the metric inherited from X, and say that the collection is uniformly of asymptotic dimension $\leq n$ if for every $r>0$ there is $R>0$ such that for every $j \in \mathscr{J}$ there is an open cover \mathcal{X}_{j} of X_{j} such that

- $\operatorname{mesh}\left(\mathcal{X}_{j}\right) \leq R$.
- $\operatorname{Leb}\left(\mathcal{X}_{j}\right)>r$.
- ord $\left(\mathcal{X}_{j}\right) \leq n+1$.

As an abbreviation we will sometimes write 'asdim' in place of 'asymptotic dimension'.

Recall that a cover of X is locally finite if every $x \in X$ has a neighborhood which intersects finitely many sets in the cover. We call the intersection of k distinct elements of \mathcal{A} a k-intersection, and denote the union of all k-intersections by $[\mathcal{A}]^{k}$. We will need the following two Propositions for the proof of Theorem 3.1. We first prove Theorem 3.1 assuming them and then turn to their proof.

Proposition 4.2. Let \mathcal{A} be a locally finite open cover of X such that $\operatorname{ord}(\mathcal{A}) \leq m$ and the collection of components of the k-intersections of $\mathcal{A}, 1 \leq k \leq m$, is uniformly of asdim $\leq m-k$. Then \mathcal{A} can be refined by a uniformly bounded open cover of order at most m.

Note that McMullen's theorem, namely the case $s=0$ of Theorem 3.1, already follows from Proposition 4.2, since by a theorem of Lebesgue, a uniformly bounded open cover of \mathbb{R}^{t} is of order at least $t+1$.

Proposition 4.3. Let Δ_{1} and Δ_{2} be simplices, $X=\Delta_{1} \times \Delta_{2}, p_{i}$: $X \rightarrow \Delta_{i}$ the projections and \mathcal{A} a finite open cover of X such that for every $A \in \mathcal{A}$ and $i=1,2$ the set $p_{i}(A)$ does not meet at least one of the faces of Δ_{i}. Then $\operatorname{ord}(\mathcal{A}) \geq \operatorname{dim} \Delta_{1}+\operatorname{dim} \Delta_{2}+1$.

Proof of Theorem 3.1. Let $m \stackrel{\text { def }}{=} \operatorname{dim} M=s+t$, and suppose by contradiction that $\operatorname{ord}(\mathcal{U}) \leq m$. Since every cover of M has a locally finite refinement, there is no loss of generality in assuming that \mathcal{U} is locally finite. Replacing \mathcal{U} with the set of connected components of elements
of \mathcal{U}, we may assume that all elements of \mathcal{U} are connected. For any r_{0}, and any bounded set Y, the product space $Y \times \mathbb{R}^{d}$ can be covered by a cover of order $d+1$ and Lebesgue number greater than r_{0}. Hence our hypothesis (ii) implies that for each $k=1, \ldots, m$, the collection of connected components of intersections of k distinct elements of \mathcal{U} is uniformly of asymptotic dimension at most $m-k$. Therefore we can apply Proposition 4.2 to assume that \mathcal{U} is uniformly bounded and of order at most m. Take a sufficiently large t-dimensional simplex $\Delta_{1} \subset \mathbb{R}^{t}$ so that the projection of every set in \mathcal{U} does not intersect at least one of the faces of Δ_{1}. We obtain a contradiction to Proposition 4.3 .

For the proofs of Propositions 4.2, 4.3 we will need some auxiliary lemmas.

Lemma 4.4. Let $\left\{G_{i}: i \in \mathscr{I}\right\}$ be a locally finite collection of open subsets of X, and let Z be an open subset such that for each $i \neq j$, $G_{i} \cap G_{j} \subset Z$. Then there are disjoint open subsets $\mathbf{E}_{i}, i \in \mathscr{I}$, such that for any i

$$
G_{i} \backslash Z \subset \mathbf{E}_{i} \subset G_{i}
$$

Proof. Let $G=\bigcup_{i \in \mathscr{\mathscr { I }}} G_{i}$. Without loss of generality we can assume that $X=G \cup Z$. Define $F_{i} \stackrel{\text { def }}{=} G_{i} \backslash Z, F \stackrel{\text { def }}{=} G \backslash Z$. Then the sets F_{i} are closed and disjoint, and since the collection $\left\{G_{i}\right\}$ is locally finite, the sets $F \backslash F_{i}$ are closed as well. Denote by \mathbf{d} the metric on X as well as the distance from a point to a closed subset. Then it is easy to verify that the sets

$$
\mathbf{E}_{i} \stackrel{\text { def }}{=}\left\{x \in G_{i}: \mathbf{d}\left(x, F_{i}\right)<\mathbf{d}\left(x, F \backslash F_{i}\right)\right\}
$$

satisfy the requirements.
We denote the nerve of a cover \mathcal{A} by $\operatorname{Nerve}(\mathcal{A})$, and consider it with the metric topology induced by barycentric coordinates. Given a partitition of unity subordinate to a cover \mathcal{A} of X, there is a standard construction of a map $X \rightarrow \operatorname{Nerve}(\mathcal{A})$; such a map is called a canonical map.

Lemma 4.5. Let a locally connected metric space Y be the union of two open subsets \mathbf{D} and \mathbf{E}, and let \mathcal{D} and \mathcal{E} be open covers of \mathbf{D} and \mathbf{E} respectively, with bounded mesh and ord, and such that if $C \subset \mathbf{D} \cap \mathbf{E}$ is a connected subset contained in an element of \mathcal{D}, then it is contained in an element of \mathcal{E}. Then, there is an open cover \mathcal{Y} of Y such that:
(1) The cover \mathcal{Y} refines $\mathcal{D} \cup \mathcal{E}$.
(2) $\operatorname{mesh}(\mathcal{Y}) \leq \max (\operatorname{mesh}(\mathcal{D}), \operatorname{mesh}(\mathcal{E}))$.
(3) $\operatorname{ord}(\mathcal{Y}) \leq \max (\operatorname{ord}(\mathcal{D})+1, \operatorname{ord}(\mathcal{E}))$.

Proof. Let $\operatorname{ord}(\mathcal{D})=n+1$, let $\mathbf{A} \stackrel{\text { def }}{=} \operatorname{Nerve}(\mathcal{D})$, and let $\pi: \mathbf{D} \rightarrow \mathbf{A}$ be a canonical map. Take an open cover of \mathcal{A} of \mathbf{A} such that $\operatorname{ord}(\mathcal{A}) \leq n+1$ and $\pi^{-1}(\mathcal{A})$ refines \mathcal{D}. Let $f: Y \rightarrow[0,1]$ be a continuous map such that $\left.f\right|_{Y \backslash \mathbf{E}} \equiv 0$ and $\left.f\right|_{Y \backslash \mathbf{D}} \equiv 1$. Set $\mathbf{C} \stackrel{\text { def }}{=} f^{-1}([0,1))$ and

$$
g: \mathbf{C} \rightarrow \mathbf{B} \stackrel{\text { def }}{=} \mathbf{A} \times[0,1], \quad g(c) \stackrel{\text { def }}{=}(\pi(c), f(c))
$$

Since $\operatorname{dim} \mathbf{B} \leq n+1$ there is an open cover \mathcal{B} of \mathbf{B} such that ord $(\mathcal{B}) \leq$ $n+2$, the projection of \mathcal{B} to \mathbf{A} refines \mathcal{A} and the projection of \mathcal{B} to $[0,1]$ is of mesh $<1 / 2$. Let \mathcal{C} denote the collection of connected components of sets $\left\{g^{-1}(B): B \in \mathcal{B}\right\}$. By construction \mathcal{C} refines \mathcal{D}. Moreover $\operatorname{ord}(\mathcal{C}) \leq n+2$ and no element of \mathcal{C} meets both $f^{-1}(0)$ and $f^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$. Then for every $C \in \mathcal{C}$ which meets $f^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$ we have that $C \subset \mathbf{D} \cap \mathbf{E}$ and there is an element $D \in \mathcal{D}$ such that $C \subset D$ and hence there is $E \in \mathcal{E}$ such that $C \subset E$. We choose one such E and say that E marks C.

We now modify elements of \mathcal{E}, defining

$$
\tilde{E} \stackrel{\text { def }}{=}\left(E \cap f^{-1}\left(\left(\frac{1}{2}, 1\right]\right)\right) \cup \bigcup_{E \text { marks } C} C .
$$

Finally define \mathcal{Y} as the collection of modified elements of \mathcal{E} and the elements of \mathcal{C} which do not meet $f^{-1}\left(\left[\frac{1}{2}, 1\right]\right)$. It is easy to see that \mathcal{Y} has the required properties.

Lemma 4.6. Let Y be a locally connected metric space and let $\mathbf{D}, \mathbf{E}_{i}, i \in$ \mathscr{I} be open subsets which cover Y. Assume that the \mathbf{E}_{i} 's are disjoint, connected, and are uniformly of asdim $\leq \ell$. Let \mathcal{D} be an open cover of \mathbf{D} which is of bounded mesh and ord $\mathcal{D} \leq \ell$. Then Y has an open cover \mathcal{Y} which refines the cover $\mathcal{D} \cup\left\{\mathbf{E}_{i}: i \in \mathscr{I}\right\}$, is of bounded mesh and ord $\mathcal{Y} \leq \ell+1$.

Proof. Using the assumption that \mathbf{E}_{i} is uniformly of asdim $\leq \ell$ we find an open cover \mathcal{E}_{i} of \mathbf{E}_{i} which is of uniformly bounded mesh, such that ord $\mathcal{E}_{i} \leq \ell+1$ and Leb $\mathcal{E}_{i}>$ mesh \mathcal{D}. We assume that the sets in \mathcal{E}_{i} are subsets of \mathbf{E}_{i} and $\operatorname{Leb}\left(\mathcal{E}_{i}\right)$ is determined with respect to the metric of Y restriced to \mathbf{E}_{i}. Let

$$
\mathbf{E} \stackrel{\text { def }}{=} \bigcup_{i \in \mathscr{I}} \mathbf{E}_{i} \text { and } \mathcal{E} \stackrel{\text { def }}{=} \bigcup_{i \in \mathscr{I}} \mathcal{E}_{i} .
$$

Clearly it suffices to verify that the hypotheses of Lemma 4.5 are satisfied. Indeed, by assumption the cover \mathcal{D} is of bounded mesh and order, and \mathcal{E} is of bounded mesh because of the uniform bound on
$\operatorname{mesh}\left(\mathcal{E}_{i}\right)$. We also have that $\operatorname{ord} \mathcal{E} \leq \ell+1$ because of the bounds $\operatorname{ord} \mathcal{E}_{i} \leq \ell+1$ and the fact that the \mathbf{E}_{i} are disjoint. For the last condition, let a connected subset $C \subset \mathbf{D} \cap \mathbf{E}$ which is contained in an element of \mathcal{D} be given. By the connectedness and disjointness of the \mathbf{E}_{i} 's we conclude that there exists i with $C \subset \mathbf{E}_{i}$. Because Leb $\mathcal{E}_{i}>$ mesh \mathcal{D} we deduce that since C is contained in an element of \mathcal{D} it must be contained in an element of \mathcal{E}_{i} and in turn, it must be contained in an element of \mathcal{E}.

Proof of Proposition 4.2. Proceeding inductively in reverse order, for $k=m, \ldots, 1$ we will construct a uniformly bounded open cover \mathcal{A}^{k} of $[\mathcal{A}]^{k}$ such that $\operatorname{ord}\left(\mathcal{A}^{k}\right) \leq m+1-k$ and \mathcal{A}^{k} refines the restriction of \mathcal{A} to $[\mathcal{A}]^{k}$. The construction is obvious for $k=m$. Namely, our hypothesis and Definition 4.1 with $n=m-k=0$ mean that $[\mathcal{A}]^{m}$ has a cover of bounded mesh and order 1 , that is, we can just set \mathcal{A}^{m} to be the connected components of $[\mathcal{A}]^{m}$. Assume that the construction is completed for $k+1$ and proceed to k as follows. First notice that for two distinct k-intersections A and A^{\prime} of \mathcal{A} the complements $A \backslash[\mathcal{A}]^{k+1}$ and $A^{\prime} \backslash[\mathcal{A}]^{k+1}$ are disjoint. By Lemma 4.4, we can cover $[\mathcal{A}]^{k} \backslash[\mathcal{A}]^{k+1}$ by a collection $\left\{\mathbf{E}_{i}: i \in \mathscr{I}\right\}$ of disjoint connected open sets such that every \mathbf{E}_{i} is contained in a k-intersection of \mathcal{A}. In particular, the collection $\left\{\mathbf{E}_{i}: i \in \mathscr{I}\right\}$ is uniformly of asdim $\leq m-k$. We can therefore apply Lemma 4.6 with the choices $Y=[\mathcal{A}]^{k}, \mathbf{D}=[\mathcal{A}]^{k+1}, \mathcal{D}=\mathcal{A}^{k+1}$, the collection $\left\{\mathbf{E}_{i}: i \in \mathscr{I}\right\}$, and $\ell=m-k$, and obtain an open cover \mathcal{Y} of $[\mathcal{A}]^{k}$ of order $\leq m-k+1$ that refines $\mathcal{D} \cup\left\{\mathbf{E}_{i}: i \in \mathscr{I}\right\}$ and in particular, refines $\left.\mathcal{A}\right|_{Y}$. This completes the inductive step.

Proof of Proposition 4.3. For every $A \in \mathcal{A}$ choose a vertex v_{i}^{A} of Δ_{i} so that $p_{i}(A)$ does not intersect the face of Δ_{i} opposite to v_{i}^{A}. Let $Y \stackrel{\text { def }}{=} \operatorname{Nerve}(\mathcal{A})$ and let $f: X \rightarrow X$ be the composition of a canonical map $X \rightarrow Y$ and a map $Y \rightarrow X$ which is linear on each simplex of Y and sends the vertex of Y related to $A \in \mathcal{A}$ to the point $\left(v_{1}^{A}, v_{2}^{A}\right) \in X$. Take a point $x \in \partial \Delta_{1} \times \Delta_{2}$. Then $p_{1}(x)$ belongs to a face Δ_{1}^{\prime} of Δ_{1} and hence for every $A \in \mathcal{A}$ containing x we have that $v_{1}^{A} \in \Delta_{1}^{\prime}$. Thus both x and $f(x)$ belong to $\Delta_{1}^{\prime} \times \Delta_{2}$. Applying the same argument to $\Delta_{1} \times \partial \Delta_{2}$ we get that the boundary ∂X is invariant under f and f restricted to ∂X is homotopic to the identity map of ∂X. If $\operatorname{ord}(\mathcal{A}) \leq$ $\operatorname{dim} \Delta_{1}+\operatorname{dim} \Delta_{2}$ then $\operatorname{dim} Y \leq \operatorname{dim} X-1$ and hence there is an interior point a of X not covered by $f(X)$. Take a retraction $r: X \backslash\{a\} \rightarrow \partial X$. Then the identity map of ∂X factors up to homotopy through the
contractible space X which contradicts the non-triviality of the reduced homology of ∂X.

See $\S 5$ for another proof of Proposition 4.3.

5. Another argument for Theorem 3.1

In this section we will sketch another proof of Theorem 3.1. The proof, suggested by Roman Karasev, proceeds by reducing the theorem to its special case $s=0$.

Let $\Delta_{C F K}$ denote the Coxeter-Freudenthal-Kuhn simplex

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq \cdots \leq x_{n} \leq 1\right\}
$$

and let Γ be the group generated by isometric reflections of \mathbb{R}^{n} in the facets of $\Delta_{C F K}$. Then it is known [Cox34] that Γ acts discretely on \mathbb{R}^{n} with fundamental domain $\Delta_{C F K}(\Gamma$ is the so-called affine Coxeter group of type \tilde{A}_{n}). Using this fact, we prove Theorem 3.1 as follows.

Recall that the case $s=0$ of the Theorem was proved by McMullen, see [McM05, Thm. 5.1]. According to this result, a cover \mathcal{V} of \mathbb{R}^{m} with $\operatorname{Leb}(\mathcal{V})>0$ has order at least $m+1$, provided it satisfies the following analogue of (ii):
(ii)' There is R so that for connected component V of the intersection of $k \leq m$ distinct elements of \mathcal{V} is $(R, m-k)$-almost affine.
We remark that McMullen assumed that \mathcal{V} has positive inradius, i.e. there is $r>0$ such that for any $x \in \mathbb{R}^{m}$, there is an element of \mathcal{V} containing the ball of radius r around x. However as we remarked above, this hypothesis is not essential.

Setting $m \stackrel{\text { def }}{=} s+t$, starting with a cover of M satisfying (i) and (ii) we will form a cover of \mathbb{R}^{m} satisfying (ii)'.

Clearly there is no loss of generality in assuming that $\Delta=\Delta_{C F K}$. Let $\varphi: \mathbb{R}^{m} \rightarrow \Delta \times \mathbb{R}^{t}$ be the map which sends (x, y), where $x \in \mathbb{R}^{s}, y \in \mathbb{R}^{t}$ to $\left(x^{\prime}, y\right)$ where x^{\prime} is the representative of the orbit Γx in Δ. Let \mathcal{V} be the cover of \mathbb{R}^{s+t} obtained by pulling back the cover \mathcal{U}. For each j, let x_{j} be the vertex of Δ opposite F_{j} and let Γ_{j} be the finite subgroup of Γ fixing x_{j}. Then $\Gamma_{j} \Delta$ is a polytope all of whose boundary faces are images of F_{j} under Γ_{j}. In light of assumption (i), this implies that any connected component of any $V \in \mathcal{V}$ is within a uniformly bounded distance of $\{v\} \times \mathbb{R}^{t}$ for some $v \in V$. Therefore (ii)' holds for \mathcal{V}, for $k \leq s$, while for $k>s$, (ii)' for \mathcal{V} is implied by (ii) for \mathcal{U}. By McMullen's theorem, the order of \mathcal{V} is at least $s+t+1$, and therefore the same holds for \mathcal{U}.

A similar argument, also suggested by Roman Karasev, gives another proof of Proposition 4.3. Namely suppose that for $i=1,2, \Delta_{i} \subset$ $\mathbb{R}^{n_{i}}$ is realized concretely as the Coxeter-Freudenthal-Kuhn simplex of dimension n_{i}. Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$ where Γ_{i} is the group generated by reflections in the facets of Δ_{i}. Then a cover of $\Delta_{1} \times \Delta_{2}$ gives rise to a cover of $\mathbb{R}^{n_{1}+n_{2}}$ by open sets of uniformly bounded diameter, and hence Lebesgue's theorem implies that there is a point which is covered $n_{1}+n_{2}+1$ times.

References

[Cox34] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) $\mathbf{3 5}$ (1934), no. 3, 588-621. MR1503182
[Kar] R. Karasev, Covering dimension using toric varieties. Preprint, available at http://arxiv.org/pdf/1307.3437v1.pdf.
[McM05] C. T. McMullen, Minkowski's conjecture, well-rounded lattices and topological dimension, J. Amer. Math. Soc. 18 (2005), no. 3, 711-734 (electronic). MR2138142 (2006a:11086)
[PS] A. Pettet and J. Suoto, Periodic maximal flats are not peripheral. preprint.
[SWa] U. Shapira and B. Weiss, On stable lattices and the diagonal group. Available on arxiv http://arxiv.org/abs/1309.4025.
[SWb] U. Shapira and B. Weiss, On the mordell-gruber spectrum. Preprint, to appear in IMRN.
[TW03] G. Tomanov and B. Weiss, Closed orbits for actions of maximal tori on homogeneous spaces, Duke Math. J. 119 (2003), no. 2, 367-392. MR1997950 (2004g:22006)
[Zim84] R. J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR776417 (86j:22014)

Dept. of Mathematics, Ben Gurion University, Be'er Sheva, Israel mlevine@math.bgu.ac.il

Dept. of Mathematics, Technion, Haifa, Israel ushapira@tx.technion.ac.il
Dept. of Mathematics, Tel Aviv University, Tel Aviv, Israel barakw@post.tau.ac.il

