
MEASURE THEORETICAL ENTROPY OF COVERS

URI SHAPIRA

Abstract. In this paper we introduce three notions of measure theoretical entropy of
a measurable cover U in a measure theoretical dynamical system. Two of them were
already introduced in [R] and the new one is defined only in the ergodic case. We then
prove that these three notions coincide, thus answering a question posed in [R] and
recover a variational inequality (proved in [GW]) and a proof of the classical variational
principle based on a comparison between the entropies of covers and partitions.

1. Introduction

In this paper a measure theoretical dynamical system (m.t.d.s) is a four tuple (X,B, µ, T ),
where (X,B) is a standard space (i.e isomorphic to [0, 1] with the Borel σ− algebra ,µ is
a probability measure on (X,B) and T is an invertible measure preserving map from X
to itself.

A topological dynamical system (t.d.s) is a pair (X,T ), where X is a compact metric
space and T is a homeomorphism from X to itself.

In [R] the author introduced two notions of measure theoretical entropy of a cover, both
generalizing the definition of measure theoretical entropy of a partition and influenced by
[BGH]. Namely,

(1) h+
µ (U) = infα�Uhµ(α)

(2) h−µ (U) = lim 1
n
infα�Un−1

0
Hµ(α)

It was shown there among other things that h−µ (U) ≤ h+
µ (U) and that in the topological

case (i.e a t.d.s and an open cover), one can always find an invariant measure µ such that
h−µ (U) = htop(U). This generalizes the result from [BGH] asserting that in the topological
case one can always find an invariant measure µ such that h+

µ (U) ≥ htop(U)

The question whether h−µ (U) = h+
µ (U) arose. In [HMRY] the authors continued the re-

search on these concepts and proved, among other results, with aid of the Jewett-Krieger
theorem, that if there exists a t.d.s, an invariant measure µ and an open cover U such
that h−µ (U) < h+

µ (U) then one can find such a situation in a uniquely ergodic t.d.s.
Recently, B.Weiss and E.Glasner [GW] showed that if (X,T ) is a t.d.s and U is any cover,
then for any invariant measure µ h+

µ (U) ≤ htop(U) and so combining these results one
concludes that for a t.d.s and an open cover we have that h−µ (U) = h+

µ (U).
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The measure theoretical entropy of a partition α in an ergodic m.t.d.s can be defined
as: lim 1

n
logN (αn−1

0 , ε), where 0 < ε < 1 and N (αn−1
0 , ε) is the minimum number of atoms

of αn−1
0 needed to cover X up to a set of measure, less than ε. (See [Ru]).

In this paper we follow this line and in section 4 define a notion of measure theoreti-
cal entropy for a cover U of an ergodic m.t.d.s as heµ(U) = lim 1

n
logN (Un−1

0 , ε) (where
0 < ε < 1). We prove (Theorem 4.2) the existence of the limit and its Independence of ε,
in a different way from [Ru] using Strong Rohlin Towers. This can serve as an alternative
proof of the fact that the above definition of measure theoretical entropy of a partition in
an ergodic m.t.d.s is well defined.
We show in a direct way that in the ergodic case the three notions: h−µ (U), h+

µ (U), heµ(U),
coincide (Theorems 4.4, 4.5), and from the ergodic decomposition for h−µ (U), h+

µ (U),
proved in [HMRY], we deduce that h−µ (U) = h+

µ (U) in the general case (Corollary 5.2),
and so, we can denote this number by hµ(U , T ) or hµ(U).
We also get an immediate proof of a slight generalization of the inequality hµ(U) ≤ htop(U),
mentioned earlier, from [GW], to the non topological case (Theorem 6.1).

Acknowledgements : This paper was written as an M.Sc thesis at the Hebrew Uni-
versity of Jerusalem under the supervision of prof’ Benjamin Weiss. I would like to thank
prof’ Weiss, for introducing me to the subject and for sharing with me his and Eli Glasner’s
valuable ideas.

2. Preliminaries

Recall that in the following a measure theoretical dynamical system, (m.t.d.s), is a four
tuple (X,B, µ, T ), where (X,B) is a standard space, µ is a probability measure on (X,B)
and T is an invertible measure preserving transformation of X.

2.1. Definition.

• A cover of X is a finite collection of measurable sets that cover X.
• The collection of covers of X will be denoted by CX
• A partition of X is a cover of X whose elements are mutually disjoint.
• The collection of partitions of X will be denoted by PX .

Usually we denote covers by U ,V and partitions by α, β, γ etc.
• We say that a cover U is finer than V (U � V) if any element of U is contained in

an element of V .
• For any U ∈ CX and k ∈ Z we denote by T k(U) the cover whose elements are the

sets of the form T k(U) where U ∈ U .
• We define the join, U ∨ V , of two covers U ,V , to be the cover whose elements are

sets of the form U ∩ V where U ∈ U and V ∈ V .
• When the transformation T is understood we denote, for l > k, the cover T−k(U)∨
T−(k+1)(U) · · · ∨ T−l(U), by U lk.
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2.2. Definition. For 0 < δ < 1 define H(δ) = −δlogδ − (1 − δ)log(1 − δ). Note that
limδ→0H(δ) = 0.

In the sequel, we will prove some combinatorial lemmas and often we will encounter
the expression

∑
j≤δK

(
K
j

)
. We shall make use of the next elementary lemma:

2.3. Lemma. (lemma 1.5.4 in [Sh1]): If δ < 1
2

then
∑

j≤δK
(
K
j

)
≤ 2H(δ).

2.4. Definition. A m.t.d.s (X,B, µ, T ) is said to be aperiodic, if for every n ∈ N,
µ({x|T nx = x}) = 0.

An ergodic system which is not aperiodic is easily seen to be a cyclic permutation on a
finite number of atoms.
One of our main tools in practice, will be the Strong Rohlin Lemma ([Sh2] p.15):

2.5. Lemma. Let (X,B, µ, T ) be an ergodic, aperiodic system and let α ∈ PX . Then for
any δ > 0 and n ∈ N, one can find a set B ∈ B, such that B, TB . . . , T n−1B are mutually
disjoint, µ(

⋃n−1
0 T iB) > 1− δ and the distribution of α is the same as the distribution of

the partition α|B that α induces on B.

The data (n, δ, B, α) will be called, a strong Rohlin tower of height n and error δ with
respect to α and with B as a base.

3. Measure theoretical entropy of covers

Let (X,B, µ, T ) be a m.t.d.s. The definitions and proofs in this section were introduced
in [R].

3.1. Definition. for U ∈ CX we define the entropy of U as:
Hµ(U) = infα�UHµ(α).

3.2. Proposition.

(1) If U ,V ∈ CX then Hµ(U ∨ V) ≤ Hµ(U) +Hµ(V).
(2) For every U ∈ CX Hµ(T−1U) = Hµ(U)

3.3. Corollary. If U ∈ CX then the sequence Hµ(Un−1
0 ) is sub-additive.

3.4. Corollary. If U ∈ CX then the sequence 1
n
Hµ(Un−1

0 ) converges to infn
1
n
Hµ(Un−1

0 ).

Two ways of generalizing the definition of measure theoretical entropy of a partition to
a cover are:

3.5. Definition. If U ∈ CX , define

(1) h−µ (U , T ) = lim 1
n
Hµ(Un−1

0 ).
(2) h+

µ (U , T ) = infα�U hµ(α, T ).

When T is understood we usually omit it and write h−µ (U), h+
µ (U).

We shall see later that in fact h−µ (U) = h+
µ (U).
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3.6. Proposition.

(1) h−µ (U) ≤ h+
µ (U).

(2) for any m ∈ N h−µ (U , T ) = 1
m
h−µ (Um−1

0 , Tm)

(3) h−µ (U , T ) = limn
1
n
h+
µ (Un−1

0 , T n)

4. The ergodic case

Throughout this section, (X,B, µ, T ), is an ergodic m.t.d.s.
For U ∈ CX , we denote by N (U , ε, µ), the minimum number of elements of U , needed
to cover all of X, up to a set of measure, less than ε. When µ is understood we write
N (U , ε).

By a strait forward calculation one deduces from [Sh1] p.51 the following:

4.1. Theorem. If (X,B, µ, T ) is an ergodic m.t.d.s and α ∈ PX , then for any 0 < ε < 1,
hµ(α, T ) = lim 1

n
logN (αn−1

0 , ε).

In view of this result, a natural way to generalize the definition of measure theoretical
entropy of a partition to covers will be the following:

hµ(U , T ) = lim
1

n
logN (Un−1

0 , ε).

Where 0 < ε < 1. In order to do so we have to show that the above limit exists and is
independent of ε.

4.2. Theorem. For any 0 < ε < 1, the sequence 1
n
logN (Un−1

0 , ε) converges and the limit
is independent of ε.

In order to prove this theorem we shall need a combinatorial lemma. Let us first
introduce some terminology (in first reading the reader may skip the following discussion
and turn to the discussion held after the proof of Lemma 4.3):

• We say that two intervals in N, I, J are separated if there is n ∈ N such that for
any i ∈ I, j ∈ J we have i < n < j or j < n < i.
• We say that a collection {Ii}i∈A of intervals in N is a separated collection if any

two of its elements are separated.
• We say that a collection {Ii}i∈A of subintervals of an interval [1, K] is a (λ, ε)

separated cover of [1, K] (for 0 < λ < 1, 0 < ε), if it is separated and

| | ∪ Ii|
K
− λ| < ε.

• Given a vector ~λ = (λ1 . . . λl), we denote

νr(~λ) =
l∏

j=r

(1− λj)
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or just νr when ~λ is understood. For r > l we set νr = 1. Note that for j < l we
have:

l∑
r=j+1

λrνr+1 = 1− νj.

In the following combinatorial lemma, we will be given l separated collections {Iji }i∈Aj ,
j = 1 . . . l of subintervals of a very long interval [1, K]. The knowledge about these
collections is that the members of the j’th collection all have the same length, Nj, N1 <<
N2 · · · << Nl and every collection is very ”equally distributed” in [1, K] in some sense.
We would like to extract, from these collections, a separated collection that will cover as
much as we can, from [1, K].
Let us denote by λj, the percentage of [1, K], that is covered by the j’th collection and

by ~λ, the corresponding vector. Then, λl = 1 − νl percent of [1, K] is covered by {I li}.
The complement is of size Kνl and we could cover λl−1 percent of it with the {I l−1

i }’s.
By now we covered K(1 − νl−1) and we could cover λl−2 percent of the complement by
the {I l−2

i }’s. So by now we covered K(1− νl−2) of [1, K]. We go on this way and extract
a separated collection that covers 1 − ν1 percent of [1, K]. Let us now make these ideas
precise.

4.3. Lemma. For any l > 0, there exists a positive function ϕ = ϕ(N1 . . . Nl, η1 . . . ηl, ε)
(where N1 < N2 · · · < Nl ∈ N, ηi, ε > 0) such that

lim sup
ε→0

lim sup
N1→∞

lim sup
η1→0

. . . lim sup
Nl→∞

lim sup
ηl→0

ϕ(Ni, ηi, ε) = 0. (∗)

and such that if 0 < λj < 1 j = 1 . . . l and {Iji }i∈Aj are separated collections of subintervals
of [1, K] that satisfy:

(a) For every 1 ≤ j ≤ l |Iji | = Nj.

(b) For every 1 ≤ j ≤ l {Iji } is a (λj, ε)-separated cover of [1, K].
(c) For every 0 ≤ j < r ≤ l, the number of subintervals, J , of [1, K], of length Nr,
which are not (λj, ε)-separately covered by {Iji ⊂ J} is less than ηrK.

then there are sets Ãj ⊂ Aj j = 1 . . . l, such that {{Iji }i∈Ãj}
l
j=1 is a separated collection

and [1, K] is ((1− ν1(~λ)), ϕ(Ni, ηi, ε))-separately covered by {{Iji }i∈Ãj}
l
j=1.

Proof. We will build the Ãj’s by recursion, starting with j = l. Define Ãl = Al. Then

from (b) we have that |Nl|Ãl|
K
− λl| < ε. So if we will define fl(Ni, ηi, ε) = ε, then fl

satisfies (∗) and [1, K] is (λlνl+1, fl(Ni, ηi, ε))-separately covered by {I li}i∈Ãl . Now, sup-

pose we have defined Ãl . . . Ãj+1 and positive functions fl . . . fj+1, that satisfy (∗), such
that {{Iri }i∈Ãr}

l
r=j+1, is a separated collection and for every j + 1 ≤ r ≤ l, [1, K] is

(λrνr+1, fr(Ni, ηi, ε))-separately covered by {Iri }i∈Ãr . Define now,

Ãj = {i ∈ Aj| Iji is separated from {Irs}s∈Ãr , r = j + 1 . . . l}.
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We want to estimate the size of Ãj.
Estimation from below: Choose j + 1 ≤ r ≤ l and divide the members of {Iri }i∈Ãr to
good ones and bad ones according to (c), i.e, Irs is good if it is (λj, ε)-separately covered

by {Iji ⊂ Irs}. We have at most ηrK, Iri ’s, which are bad and at most |Ãr|, Iri ’s, which

are good. Every bad Iri rules out at most Nr
Nj

+ 2 i’s in Aj from being in Ãj. Every good

Iri rules out at most Nr
Nj

(λj + ε) + 2, i’s in Aj from being in Ãj. In total, the maximum

number of i’s in Aj that are not in Ãj is at most:

l∑
r=j+1

|Ãr|(
Nr

Nj

(λj + ε) + 2) + ηrK(
Nr

Nj

+ 2) = (∗∗)

Note that because [1, K] is (λrνr+1, fr)-separately covered by {Iri }i∈Ãr , we must have

|Ãr| ≤
K

Nr

(λrνr+1 + fr).

Using this we get:

(∗∗) ≤
l∑

r=j+1

K

Nr

(λrνr+1 + fr)(
Nr

Nj

(λj + ε) + 2) + ηrK(
Nr

Nj

+ 2)

=
l∑

r=j+1

K

Nj

λrνr+1(λj + ε) +
K

Nj

(λj + ε)fr +
2K

Nr

(λrνr+1 + fr) +
K

Nj

ηrNr + 2ηrK

=
K

Nj

λj(
l∑

r=j+1

λrνr+1)

+
K

Nj

l∑
r=j+1

{ελrνr+1 + (λj + ε)fr + 2
Nj

Nr

(λrνr+1 + fr) + ηr(Nr + 2Nj)} = (ℵ)

as mentioned earlier
∑l

j+1 λrνr+1 = 1− νj so we have that:

|Ãj| ≥ |Aj| − (ℵ) ≥ K

Nj

(λj − ε)− (ℵ)

=
K

Nj

{
λjνj −

{
ε+

l∑
r=j+1

{ελrνr+1 + (λj + ε)fr + 2
Nj

Nr

(λrνr+1 + fr) + ηr(Nr + 2Nj)}
}}

note that

|(ε+
l∑

r=j+1

{ελrνr+1 + (λj + ε)fr + 2
Nj

Nr

(λrνr+1 + fr) + ηr(Nr + 2Nj)}|

≤ ε+
l∑

r=j+1

{ε+ (1 + ε)fr + 2
Nj

Nr

(1 + fr) + ηr(Nr + 2Nj)}
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so if we will denote the last expression by f̃j(Ni, ηi, ε), then we see that f̃j satisfies (∗)
and |Ãj| ≥ K

Nj
(λjνj+1 − f̃j).

Estimation from above: For every j + 1 ≤ r ≤ l, we have that |Ãr| ≥ K
Nr

(λrνr+1 − fr)
and the number of bad Iri ’s is at most ηrK, so we must have at least K

Nr
(λrνr+1−fr)−ηrK

good Iri ’s. Every good Iri , rules out at least Nr
Nj

(λj − ε) i’s in Aj from being in Ãj. So the

number of i’s in Aj that are not in Ãj is at least:

l∑
r=j+1

Nr

Nj

(λj − ε){
K

Nr

(λrνr+1 − fr)− ηrK}

and so

|Ãj| ≤ |Aj| −
l∑

r=j+1

Nr

Nj

(λj − ε){
K

Nr

(λrνr+1 − fr)− ηrK}

≤ K

Nj

(λj + ε)−
l∑

r=j+1

{K
Nj

(
λj(λrνr+1 − fr)− ε(λrνr+1 − fr)

)
− K

Nj

ηrNr(λj − ε)
}

=
K

Nj

{
λj

(
1−

l∑
r=j+1

λrνr+1

)
+ ε+

l∑
r=j+1

(
λjfr + ε(λrνr+1 − fr) + ηrNr(λj − ε)

)}
≤ K

Nj

{
λjνj+1 + ε+

l∑
r=j+1

(
fr + ε(1 + fr) + ηrNr(1 + ε)

)}
so if we will denote

f̂j(Ni, ηi, ε) = ε+
l∑

r=j+1

(
fr + ε(1 + fr) + ηrNr(1 + ε)

)}
then f̂j satisfies (∗) and |Ãj| ≤ K

Nj

(
λjνj+1 + f̂j

)
. Define fj = max(f̃j, f̂j) and then we

have that fj satisfies (∗) and

| |Ãj|Nj

K
− λjνj+1| ≤ fj.

We have defined Ãj ⊂ Aj and a positive function fj, that satisfies (∗), such that {{Iri }i∈Ãr}
l
r=j

is a separated collection and [1, K] is (λjνj+1, fj)-separately covered by {Iji }i∈Ãj .
We continue this way and define sets Ãj ⊂ Aj and positive functions fj, j = 1 . . . l, such

that {{Iji }i∈Ãj}
l
j=1, is a separated collection and [1, K] is (λjνj+1, fj)-separately covered

by {Iji }i∈Ãj .
Note that this means:

K
( l∑
j=1

λjνj+1 −
l∑

j=1

fr

)
≤ |

l⋃
j=1

⋃
i∈Ãj

Iji | ≤ K
( l∑
j=1

λjνj+1 +
l∑

j=1

fr

)
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and so, if we will define ϕ =
∑
fj, then ϕ satisfies (∗) and {{Iji }i∈Ãj}

l
j=1, is a (1− ν1, ϕ)-

separated cover of [1, K]. �

Before turning to the proof of theorem 4.2, let us present some terminology. In the
following U = {U1 . . . UM}, is a cover of X. For any ρ > 0, we can find a partition
β � U , such that N (U , ρ) = N (β, ρ). Namely, we choose a subset of U , of N = N (U , ρ)
elements, that covers X up to a set of measure < ρ, {Ui1 . . . UiN} and define C1 = Ui1,

Cj = Uij \
⋃j−1
m=1 Uim, j = 2 . . . N . The Cj’s are disjoint, Cj ⊂ Uij and

⋃N
1 Cj =

⋃N
j=1 Uij.

Extend the collection {Cj}Nj=1 to a partition, β, refining U , in some way. Then, because
β � U , we have N (β, ρ) ≥ N and from our construction, it follows that N (β, ρ) ≤ N .

• We call such a partition, a ρ-good partition for U .

If (X,B, µ, T ) is aperiodic and N ∈ N, ρ, δ > 0 are given, then for a ρ-good partition β,
for UN−1

0 , we can construct a strong Rohlin tower with height N + 1 and error < δ. Let
B̃ denote the base of the tower and let B ⊂ B̃ be a union of N (β, ρ) atoms of β|B̃ that

covers B̃ up to a set of measure, less than ρµ(B̃).

• We call (β, B̃, B), a good base for (U , N, ρ, δ).
• For a set J ⊂ N, a (U , J)-name, is a function f : J → {1 . . .M}.
• f is a name of x ∈ X, if x ∈

⋂
j∈J T

−jUf(j).
• We denote the set of elements of X with f as a name by Sf .
• A set of (U , J)-names, {fi}, covers a set C ∈ B, if C ⊂

⋃
i Sfi .

In the sequel, we will want to estimate the number of elements of UN−1
0 , needed to cover

a set C ∈ B, i.e, we will want to estimate the number of (U , [0, N − 1])-names needed to
cover C. The usual way to do so is to find a collection of disjoint sets Ji ⊂ [0, N − 1]
i = 1 . . .m, that covers most of [0, N − 1], such that we can bound the number of (U , Ji)-
names needed to cover C. If we can cover C by Ri, (U , Ji)-names, {f im}

Ri
m=1, then the set

Γ = {f : [0, N − 1] → {1 . . .M}| f |Ji ∈ {f im}
Ri
m=1}, of (U , [0, N − 1])-names, covers C

and contains
∏
Ri ·MN−

∑
|Ji| elements.

This situation occurs in our proofs in the following way: Let (β, B̃, B), be a good base
for (U , N, ρ, δ) and K >> N . Set C to be the set of elements of X that visits B at
times i1 < · · · < im between 0 to K − N (under the action of T ). Then we can cover C
by no more than N (β, ρ), (U , [ij, ij + N − 1])-names. We can now turn to the proof of
theorem 4.2.

Proof. (theorem 4.2): If (X,B, µ, T ) is periodic, it follows from the ergodicity, that the
system is a cyclic permutation on a finite set of atoms and for every 0 < ε < 1 we
have lim 1

n
logN (Un−1

0 , ε) = 0. We assume, then, that the system is aperiodic and thus
we are able to use the Strong Rohlin Lemma. Given 0 < ρ2 < ρ1 < 1, we need to
show that the limits: lim 1

n
logN (Un−1

0 , ρi) i = 1, 2, exist and are equal. Note that for

every n, we have that N (Un−1
0 , ρ1) ≤ N (Un−1

0 , ρ2) and thus limsup 1
n
logN (Un−1

0 , ρ1) ≤
liminf 1

n
logN (Un−1

0 , ρ2), so it’s enough to prove that

limsup
1

n
logN (Un−1

0 , ρ2) ≤ liminf
1

n
logN (Un−1

0 , ρ1).
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Let 0 < ε0 <
1
2
, be given and denote:

h0 = liminf 1
n
logN (Un−1

0 , ρ1), L = {n ∈ N| |h0 − 1
n
logN (Un−1

0 , ρ1)| < ε0},
so L contains arbitrarily large numbers. Choose ` ∈ N, large enough so that(1

2
(1 + ρ1)

)`
logM < ε0,

(1

2
(1 + ρ1)

)`
+ ε0 <

1

2
(∗).

The towers construction: Remember the function ϕ from the combinatorial lemma
(Lemma 4.3). It satisfies:

lim sup
ε→0

lim sup
N1→∞

lim sup
η1→0

. . . lim sup
N`→∞

lim sup
η`→0

ϕ(Ni, ηi, ε) = 0

so we can choose ε > 0, small enough, such that

lim sup
N1→∞

lim sup
η1→0

. . . lim sup
N`→∞

lim sup
η`→0

ϕ(Ni, ηi, ε) < ε0.

Choose a small enough δ > 0 (in a manner specified later). Choose N1 ∈ L, large enough,
such that

lim sup
η1→0

. . . lim sup
N`→∞

lim sup
η`→0

ϕ(Ni, ηi, ε) < ε0.

Find a good base (β1, B̃1, B1), for (U , N1, ρ1, δ). Choose η1 > 0, small enough, such that

lim sup
N2→∞

lim sup
η2→0

. . . lim sup
N`→∞

lim sup
η`→0

ϕ(Ni, ηi, ε) < ε0.

From the ergodicity, we can choose N2 ∈ L, large enough, such that

• lim supη2→0 . . . lim supN`→∞ lim supη`→0 ϕ(Ni, ηi, ε) < ε0.

• µ{x | | 1
N2

∑N2−N1

r=0 χB1(T
rx)− µ(B1)| < ε

N1
} > 1− η1.

Find a good base, (β2, B̃2, B2), for (U , N2, ρ1, δ). Choose η2 > 0, small enough, such that

lim sup
N3→∞

lim sup
η3→0

. . . lim sup
N`→∞

lim sup
η`→0

ϕ(Ni, ηi, ε) < ε0.

Again, from the ergodicity, we can choose N3 ∈ L, such that

• lim supη3→0 . . . lim supN`→∞ lim supη`→0 ϕ(Ni, ηi, ε) < ε0.

• µ{x | | 1
N3

∑N3−Nj
r=0 χBj(T

rx)− µ(Bj)| < ε
Nj
j = 1, 2} > 1− η2.

In this way we construct, inductively, N1 < N2 · · · < N` (all from L), η1 . . . η` and good
bases (βj, B̃j, Bj), for (U , Nj, ρ1, δ), such that ϕ(Ni, ηi, ε) < ε0 and if we denote

Fj = {x | | 1

Nj

Nj−Ni∑
r=0

χBi(T
rx)− µ(Bi)| <

ε

Ni

i = 1 . . . j − 1}

then, µ(Fj) > 1− ηj.
Define

EK = {x | 1

K

K−Nj∑
r=0

χFj(T
rx) > 1− ηj, |

1

K

K−Nj∑
r=0

χBj(T
rx)− µ(Bj)| <

ε

Nj

j = 1 . . . `}.



10 URI SHAPIRA

From the ergodicity, we know that there is a K0, such that, for any K > K0, we have
µ(EK) > ρ2. Fix K > K0, we shall show that we can cover EK , by ”few” (U , [0, K − 1])-
names. For a fixed x ∈ EK denote

Aj = {0 ≤ m ≤ K −Nj |Tmx ∈ Bj}

and for every i ∈ Aj, let Iji = [i, i + Nj − 1].We claim that the collections {Iji }i∈Aj
j = 1 . . . `, satisfies conditions (a), (b), (c) from the combinatorial lemma (lemma 4.3),
with λj = Njµ(Bj). To see this, note first, that because the height of the j’th tower was

Nj + 1, we have that each collection {Iji }i∈Aj , is separated.

(a) By definition |Iji | = Nj.

(b) because x ∈ Ek, we know that | 1
K

∑K−Nj
r=0 χBj(T

rx)− µ(Bj)| < ε
Nj

and thus, |Nj |Aj |
K
−

λj| < ε. So the {Iji }i∈Aj forms a (λj, ε)-separated cover of [0, K − 1].

(c) For 1 < r ≤ `, we know from the fact that x ∈ EK , that 1
K

∑K−Nr
s=0 χFr(T

sx) > 1− ηr
and thus we have 1

K

∑K−Nr
s=0 χF cr (T sx) < ηr. If we use the definition of Fr, this becomes

1

K
#{0 ≤ s ≤ K −Nr | ∃ 1 ≤ j ≤ r − 1 | 1

Nr

Nr−Nj∑
i=0

χBj(T
i+sx)− µ(Bj)| ≥

ε

Nj

} < ηr

or equivalently

#{0 ≤ s ≤ K −Nr | ∃ 1 ≤ j ≤ r − 1 |Nj

Nr

#{i | i+ s ∈ Aj} − λj| ≥ ε} < ηrK

so if we choose 1 ≤ j < r ≤ `, we must have

#{J ⊂ [0, K − 1] | |J | = Nr, |
Nj

Nr

#{i | Iji ⊂ J} − λj| ≥ ε} < ηrK.

In words, the number of subintervals of [0, K − 1] of length Nr, J , which are not (λj, ε)-

separately covered, by those Iji which are contained in J is less than ηrK, as we wanted.
Using the combinatorial lemma, we can choose for every x ∈ EK a separated collection

{{Iji (x)}i∈Ãj}
`
j=1 that covers at least K

(
1 − ν1(~λ) − ε0

)
elements of [0, K − 1]. Because

these collections are separated, there is a 1 − 1 correspondence between them and their
complements. Hence, the number of such covers is less than

ψ(K,λj, ε0) =
∑

j≤
(
ν1+ε0

)
K

(
K

j

)
(∗∗)

Fix such a collection {{Iji }i∈Ãj}
`
j=1 and set

C = {x ∈ EK | {Iji (x)} = {Iji } }.

From the construction we see that for every 1 ≤ j ≤ ` we can cover Bj by no more
than 2Nj(h0+ε0) (U , [0, Nj − 1])-names, thus we can cover C by no more than 2Nj(h0+ε0)
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(U , Iji )-names. So the number of (U , [0, K − 1])-names, needed to cover C is at most

∏̀
j=1

(2Nj(h0+ε0))|Ãj | ·MK(ν1+ε0) = 2(
∑
j Nj |Ãj |)(h0+ε0) ·MK(ν1+ε0)

≤ 2K(h0+ε0) ·MK(ν1+ε0).

Finally we get from this and (∗∗) that

N (UK−1
0 , ρ2) ≤ ψ(K,λj, ε0) · 2K(h0+ε0) ·MK(ν1+ε0)

and so

1

K
logN (UK−1

0 , ρ2) ≤ 1

K
logψ(K,λj, ε0) + h0 + ε0 + ν1logM + ε0logM.

If, in the construction of the towers, we choose δ small enough and N1 large enough, we
can ensure that λj = Njµ(Bj) >

1−ρ1
2

and thus 1−λj < 1+ρ1
2
⇒ ν1 < (1+ρ1

2
)` and so, from

(∗) we have that

ν1logM < ε0 ν1 + ε0 ≤
1

2

hence, from lemma 2.3

ψ(K,λj, ε0) ≤ 2K·H((
1+ρ1

2
)`+ε0)

hence
1

K
logN (UK−1

0 , ρ2) ≤ h0 + ε0(2 + logM) +H((
1 + ρ1

2
)` + ε0)⇒

lim sup
K

1

K
logN (UK−1

0 , ρ2) ≤ h0 + ε0(2 + logM) +H((
1 + ρ1

2
)` + ε0)

letting `→∞ and ε0 → 0 we get

lim sup
K

1

K
logN (UK−1

0 , ρ2) ≤ h0

as desired.
�

After proving theorem 4.2, we can define, for an ergodic m.t.d.s, (X,B, µ, T ) and a
cover U = {U1 . . . UM} of X, a notion of measure theoretical entropy in the following way:

heµ(U , T ) = lim
1

n
logN (Un−1

0 , ε) where 0 < ε < 1.

Often we omit T and write heµ(U).

4.4. Theorem. heµ(U) = h+
µ (U)
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Proof. As before, if the system is periodic then heµ(U) = h+
µ (U) = 0. We assume, then

,that the system is aperiodic. For every partition α � U , n ∈ N and 0 < ε < 1, we have
that N (Un−1

0 , ε) ≤ N (αn−1
0 , ε) and therefore

heµ(U) = lim
1

n
logN (Un−1

0 , ε) ≤ lim
1

n
logN (αn−1

0 , ε) = hµ(α)

⇒ heµ(U) ≤ h+
µ (U)

To prove the other inequality, we shall show that for a given 0 < ε < 1
4

and n ∈ N we
have:

h+
µ (U) ≤ 1

n
logN (Un−1

0 , ε) +
√
ε · logM +H(

√
ε). (∗)

Once we prove (∗), we are done, for letting n→∞ we get h+
µ (U) ≤ heµ(U) +

√
ε · logM +

H(
√
ε) and now, letting ε→ 0 we get h+

µ (U) ≤ heµ(U) as desired.

Proof of (∗): choose δ > 0, such that ε+δ < 1
4

and find a good base (β, B̃, B) for (U , n, ε, δ).
(Now we take B̃ to be a base for a strong Rohlin tower of height N and error < δ and
not of height N + 1 as before). Set N = N (Un−1

0 , ε), so B is the union of N elements of
β|B̃. We index these elements by sequences i0 . . . in−1, such that if Bi0...in−1 is one, then

T j(Bi0...in−1) ⊂ Uij , for every 0 ≤ j ≤ n − 1. We have that µ(X \
⋃n−1

0 T i(B)) ≤ ε + δ.

Let α̂ = {Â1 . . . ÂM} be the partition of

E =
n−1⋃

0

T i(B)

defined by

Âm =
⋃
{T j(Bi0...in−1) | j ∈ [0, n− 1]. ij = m}.

Note that Âm ⊂ Um, for every 1 ≤ m ≤ M . Extend α̂, to a partition, α, of X, refining
U , in some way. Set η2 = ε + δ and define for every k > n fk(x) = 1

k

∑k−1
o χE(T jx). We

have that 0 ≤ fk ≤ 1 and
∫
fk > 1− η2, so if we will denote:

Gk = {x | fk(x) > 1− η}

then,

η · µ(Gc
k) ≤

∫
Gck

1− fk ≤
∫

1− fk ≤ η2

⇒ µ(Gk) ≥ 1− η.
We shall show that we can cover Gk, by ”few” (α, [0, k−1])-names. Partition Gk according
to the values of 0 ≤ i ≤ k − n, such that T ix ∈ B. Note that if x ∈ Gk and 0 ≤ i1 <
· · · < im ≤ k−n, are the times in which x visits B, then the collection {[ij, ij +n−1]}mj=1

covers all but at most ηk+2n elements of [0, k−1]. Because each element of this partition
defines a collection of subintervals of [0, k − 1], of length n, that covers all but at most
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ηk + 2n, elements of [0, k − 1], in a 1 − 1 manner, we have that the number of elements
in the partition of Gk is at most

ψ(k, n, η) =
∑

j<(η+ 2n
k

)k

(
k

j

)
We fix an element C of this partition of Gk and want to estimate the number of (α, [0, k−
1])-names, needed to cover it. If 0 ≤ i1 < · · · < im ≤ k − n are the times elements of
C visit B, then we need at most N , (α, [ij, ij + n − 1])-names, to cover C. Because the

size of [0, k − 1] \
⋃
j[ij, ij + n − 1], is at most ηk + 2n, we need at most N

k
n ·Mηk+2n

(α, [0, k−1])-names, to cover C. Finally, we have that we can cover Gk, by no more than:

ψ(k, n, η) ·N
k
n ·Mηk+2n

(α, [0, k − 1])-names. Because µ(Gk) > 1− η, this means that:

1

k
logN (αk−1

0 , η) ≤ 1

k
logψ(k, n, η) +

1

n
logN + (η +

2n

k
)logM.

Recall that once (η + 2n
k

) < 1
2
, we have ψ(k, n, η) ≤ 2k·H(η+ 2n

k
) and so

hµ(α) = lim
1

k
logN (αk−1

0 , η) ≤ 1

n
logN (Un−1

0 , ε) + η · logM +H(η)

so

h+
µ (U) ≤ 1

n
logN (Un−1

0 , ε) +
√
ε+ δ · logM +H(

√
ε+ δ)

Letting δ → 0 we get

h+
µ (U) ≤ 1

n
logN (Un−1

0 , ε) +
√
ε · logM +H(

√
ε)

as desired.
�

4.5. Theorem. h+
µ (U) = h−µ (U)

We already know that h+
µ (U) ≥ h−µ (U) (Proposition 3.6), so we only need to prove the

other inequality. Before we turn to the proof, let us present some terminology and prove
a combinatorial lemma.
Let Λ, be a finite alphabet of M letters, k, n ∈ N k >> n, 0 < δ < 1 and ω = ωk−1

0 , a
word of length k on Λ. (The symbol asr stands for ar . . . as). Denote Γ = Λn.

• An (n, k, δ)-packing is a pair C = (im−1
0 , γm−1

0 ) where 0 ≤ ij ≤ k − n, γj ∈ Γ, j =
0 . . .m − 1, ij + n − 1 < ij+1 and m·n

k
> 1 − δ. (We think of an (n, k, δ)-packing

as instructions to ”almost” write a word of length k, we just fill it with the γj’s,
where γj starts in the ij letter and there will be no more than δk letters to add.)
• An (n, k, δ)-packing for ω, is an (n, k, δ)-packing, C = (im−1

0 , γm−1
0 ), such that

ω
ij+n−1
ij

= γj.
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• if µ1, µ2 are probability distributions on Γ then

||µ1 − µ2|| = max
γ
|µ1(γ)− µ2(γ)|.

• An (n, k, δ)-packing, C = (im−1
0 , γm−1

0 ), induces a probability distribution on Γ,
denoted by PC, by the formula PC(γ) = 1

m
#{0 ≤ j ≤ m− 1 | γ = γj}.

• If µ is a probability distribution on Γ and C is an (n, k, δ)-packing, then we say
that C is (n, k, δ, µ), if ||µ − PC|| < δ. We say that ω is (n, k, δ, µ), if there is an
(n, k, δ)-packing for ω, which is (n, k, δ, µ).

4.6. Lemma. If µ is a probability distribution on Γ, with ”average entropy”

h0 = − 1

n

∑
γ∈Γ

µ(γ)logµ(γ)

then there exists a positive function ϕ(δ), such that ϕ(δ) → 0 as δ → 0 and such that if
0 < δ < 1

2
, then for any k > n, the number of words ω ∈ Λk, which are (n, k, δ, µ), is at

most 2k(h0+ϕ(δ)).

Proof. Fix k > n. We want to estimate the number of words ω = ωk−1
0 ∈ Λk, that are

(n, k, δ, µ). For every such word, ω, we can choose an (n, k, δ)-packing, C = (im−1
0 , γm−1

0 )
which is (n, k, δ, µ). In this way we define a map

π : {ω ∈ Λk | ω is (n, k, δ, µ)} → {C | C is an (n, k, δ, µ)− packing}

If C = (im−1
0 , γm−1

0 ), is an (n, k, δ)-packing, then n·m
k
> 1− δ. This means that |π−1(C)| ≤

|Λ|δk = M δk. So we have that

#{ω ∈ Λk | ω is (n, k, δ, µ)} ≤M δk#{C | C is an (n, k, δ, µ)− packing}.

Let us now estimate the number of (n, k, δ, µ)-packings, C = (im−1
0 , γm−1

0 ):
The number of sequences, im−1

0 , such that 0 ≤ ij ≤ k−n, ij+n−1 < ij+1 and m·n
k
> 1−δ

is at most
∑

j<δk

(
k
j

)
. From lemma 2.3 we know that for δ < 1

2
, this sums to something

≤ 2H(δ)k.
Fix such a sequence im−1

0 . Let us now estimate the number of sequences, γm−1
0 , such that

the (n, k, δ)-packing, C = (im−1
0 , γm−1

0 ), is (n, k, δ, µ).
Denote ν = ⊗m1 µ, the product measure on Γm. If γm−1

0 ∈ Γm, then

ν(γm−1
0 ) =

∏
γ∈Γ

µ(γ)#{0≤j≤m−1 | γ=γj} = 2
∑
{γ|µ(γ)6=0}#{0≤j≤m−1 | γ=γj}·logµ(γ)

= 2m
∑
{γ|µ(γ)6=0}

1
m

#{0≤j≤m−1 | γ=γj}·logµ(γ).

Now, the function f : {(xγ)γ∈Γ ∈ RΓ |
∑
xγ = 1} → R, defined by

f(~xγ) =
∑

{γ|µ(γ) 6=0}

xγ · logµ(γ)
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is continuous and so there is a positive function ψ(δ), such that ψ(δ)→ 0 as δ → 0 and if

maxγ |xγ − µ(γ)| < δ, then |f(~xγ)− f( ~µ(γ))| < ψ(δ) (note that ψ depends only on n, µ).
So if γm−1

0 ∈ Γm is such that C = (im−1
0 , γm−1

0 ), is a (n, k, δ, µ)-packing, it follows that

ν(γm−1
0 ) = 2m

∑
{γ|µ(γ)6=0}

1
m

#{0≤j≤m−1 | γ=γj}·logµ(γ)

≥ 2m
(∑

{γ|µ(γ)6=0} µ(γ)logµ(γ)−ψ(δ)
)
≥ 2k(−h0−ψ(δ)

n
)

Where the last inequality follows from the fact that m < k
n

and the definition of h0. We

conclude that an upper bound for the number of such sequences γm−1
0 is 2k(h0+

ψ(δ)
n

). If we
collect these estimations, we get to the conclusion that for 0 < δ < 1

2

#{ω ∈ Λk | ω is (n, k, δ, µ)} ≤M δk · 2H(δ)k · 2k(h0+
ψ(δ)
n

) ≤ 2k(h0+
ψ(δ)
n

+H(δ)+δ·logM)

so ϕ(δ) = ψ(δ)
n

+H(δ) + δ · logM is our desired function.
�

Proof. (of theorem 4.5): We want to show that for an ergodic system (X,B, µ, T ) and
a cover U = {U1 . . . UM} of X, we have h+

µ (U) ≤ h−µ (U). As before, if the system is
periodic, then, from the ergodicity, it must be a cyclic permutation on a finite set of
atoms. Therefore h+

µ (U) = h−µ (U) = 0. In the aperiodic case we can use the Strong
Rohlin Lemma.
Let ε > 0. We shall show that h+

µ (U) ≤ h−µ (U) + 2ε. From the definition of h−µ (U), we

can find n ∈ N and a partition β � Un−1
0 , such that 1

n
Hµ(β) ≤ h−µ (U) + ε. As β � Un−1

0 ,

we can index the elements of β, by sequences in−1
0 = i0 . . . in−1, such that if B̃in−1

0
, is one,

then T jB̃in−1
0
⊂ Uij j = 0 . . . n− 1. We can assume that each sequence, in−1

0 , corresponds

to, at most one element of β, for otherwise, we could unite these elements and get a
coarser partition β′, still refining Un−1

0 , such that 1
n
Hµ(β′) ≤ 1

n
Hµ(β) ≤ h−µ (U) + ε. Set

Γ = {1 . . .M}n. So the elements of β are indexed by Γ. (if γ ∈ Γ,does not correspond to
an element of β, in the above way, we set B̃γ = ∅). In this way, the partition β, defines a

probability distribution, ν, on Γ, defined by ν(γ) = µ(B̃γ) and we have that h0 = 1
n
Hµ(β),

is the ”average entropy” (see Lemma 4.6) of ν.
Choose δ > 0 (in a manner specified later) and let F , be a base for a strong Rohlin tower
(with respect to β) of height n and error≤ δ2. Denote the atoms of β|F by Bγ γ ∈ Γ,

(where Bγ = B̃γ ∩ F ), and define a partition α̃ = {Ã1 . . . ÃM} of E =
⋃n−1

0 T jF , by

Ãm = ∪{T jBin−1
0
| j ∈ {0 . . . n − 1}, ij = m}. Note that Ãm ⊂ Um. Extend α̃, to a

partition α of X refining U , in some way. The set of indices of elements of α, Λ (the
alphabet in which α-names are written) contains {1 . . .M} and we can always build α,
such that |Λ| ≤ 2M . We slightly abuse our notation and denote Γ = Λn. In this way, ν
is still a probability distribution on Γ.
Claim: If δ, is small enough, then hµ(α) ≤ h0 + ε.
Once we prove this claim, we are done, because then

h+
µ (U) ≤ hµ(α) ≤ h0 + ε ≤ h−µ (U) + 2ε.
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Proof of claim: For k >> n, we look at the function fk(x) = 1
k

∑k−1
0 χE(T jx). We have

that 0 ≤ fk ≤ 1 and
∫
fk > 1− δ2. Therefore

δ · µ({x|1− fk(x) > 1− δ}) ≤
∫
{x|1−fk(x)>1−δ}

1− fk ≤
∫

1− fk ≤ δ2

⇒ µ({x|fk(x) ≥ 1− δ}) ≥ 1− δ.
Denote, Gk

1 = {x|fk(x) ≥ 1− δ}. For x ∈ Gk
1, there are at most δk times 0 ≤ i ≤ k − 1,

such that T ix /∈ E. Define

Gk
2 = {x| |1

k

k−n∑
0

χA(T ix)− µ(A)| < δ, A ∈ β|F ∪ {F}}.

Let us see what can we say about the (α, [0, k − 1])-name of an element, x, of Gk
1 ∩ Gk

2.
Fix such an x and denote by i0 < · · · < im−1, the times between 0 to k − n in which x
visits F . We have that 0 ≤ ij ≤ k−n, ij +n− 1 < ij+1 (that is because the height of the
tower is n). Except for at most 2n times (n at the beginning and n at the end), x visits
E, exactly in the times ij . . . ij + n− 1, j = 1 . . .m− 1. Therefore, we must have

n ·m ≥ (1− δ)k − 2n⇒ n ·m
k
≥ 1− (δ +

2n

k
)

Denote the (α, [0, k − 1])-name of x by ω = ωk−1
0 (ωi ∈ Λ), and γj = ωij . . . ωij+n−1 ∈ Γ,

j = 0 . . .m− 1. We have that C = (im−1
0 , γm−1

0 ) is an (n, k, δ + 2n
k

)-packing for ω. Let us
now see, what can we say about the distribution, PC, this packing induces on Γ.
For 0 ≤ r ≤ k − n, we have that T rx ∈ Bγ if and only if, there is a 0 ≤ j ≤ m− 1, such
that r = ij and γ = γj. Therefore, because x ∈ Gk

2

• ∀γ ∈ Γ | 1
k
#{0 ≤ j ≤ m− 1|γ = γj} − µ(Bγ)| < δ.

• |m
k
− µ(F )| < δ.

Note that µ(F ) > 1−δ
n

, so if δ is sufficiently small, we can guarantee that | k
m
− 1

µ(F )
| would

be arbitrarily small and in turn we can guarantee that for every γ ∈ Γ

| k
m
· 1

k
#{0 ≤ j ≤ m− 1|γ = γj} −

µ(Bγ)

µ(F )
| = |PC(γ)− ν(γ)|

would be arbitrarily small. This is to say that ||PC − ν|| is arbitrarily small. We see that
there is a positive function ψ(δ), independent of k, such that ψ(δ)→ 0 as δ → 0 and such
that, if x ∈ Gk

1 ∩Gk
2 and ω is its (α, [0, k − 1])-name, then ω is (n, k, ψ(δ) + 2n

k
, ν).

Remember the function ϕ, from lemma 4.6. There is an η0 > 0, such that for every
0 < η < η0 ϕ(η) < ε. Choose k to be large enough so that 2n

k
< η0

2
and the error, δ,

of the tower to be so small, such that ψ(δ) < η0
2

, and conclude, from lemme 4.6, that

the number of (α, [0, k − 1])-names of elements of Gk
1 ∩ Gk

2 is at most 2k(h0+ε). From the
ergodicity, we know that for large enough k, µ(Gk

1 ∩Gk
2) > 1− 2δ, so we have

hµ(α) = lim
1

k
logN (αk−1

0 , 2δ) ≤ h0 + ε.

as desired.
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�

Remarks:

• If (X,T ), is totally ergodic, i.e (X,T n), is ergodic for every n ∈ N, then we
can look at expressions like heµ(Un−1

0 , T n). It follows from the definition that

heµ(U , T ) = 1
n
heµ(Un−1

0 , T n). This enables us to prove the last theorem without
any hard work done. We know from theorem 4.4, that heµ(U , T ) = h+

µ (U , T )

and therefore h+
µ (U , T ) = 1

n
h+
µ (Un−1

0 , T n). But then, proposition 3.6 (which is

elementary), gives: h−µ (U , T ) = lim 1
n
h+
µ (Un−1

0 , T n) = h+
µ (U , T ) and this gives the

desired result.
• The definitions of h+

µ (U), h−µ (U), were introduced in [R] and discussed also in [Ye],
[HMRY]. There, a proof of their equality was given only in the case where (X,T ),
is a t.d.s, and U is an open cover. The proof was based on a reduction to a uniquely
ergodic case and then a use of a variational inequality, proved in [GW].
• The definition of heµ(U) is new. This definition helps us to prove directly a slight

generalization of the variational inequality ,proved in [GW] and mentioned above,
to the non-topological case. (Theorem 6.1).
• The proofs of theorems 4.2, 4.4, 4.5 and lemma 4.6 are based on ideas of B.Weiss

and E.Glasner

5. Ergodic decomposition for h+
µ , h

−
µ

5.1. Theorem. (Proposition 5 in [HMRY]): Let U = {U1 . . . UM}, be a cover of X, and
µ =

∫
µxdµ(x), the ergodic decomposition of µ with respect to T . Then

h+
µ (U , T ) =

∫
h+
µx(U , T )dµ(x) h−µ (U , T ) =

∫
h−µx(U , T )dµ(x)

5.2. Corollary. h+
µ (U) = h−µ (U)

Proof. It follows immediately from the above and the ergodic case (Theorem 4.5) �

From now on we will denote the number h+
µ (U , T ) = h−µ (U , T )(= heµ(U , T ) in the ergodic

case), simply by hµ(U , T ) or hµ(U) or h(U), when no ambiguity can occur.

6. Variational relations

As always, let U = {U1 . . . UM}, be a cover of the m.t.d.s (X,B, µ, T ). We can define
the ”combinatorial entropy” of U as

hc(U , T ) = limn
1

n
logN (Un−1

0 )

where, N (V), is the minimum number of elements of V , needed to cover the whole space.
Note that the sequence logN (Un−1

0 ), is sub-additive, hence the limit exists. If (X,T ) is a
t.d.s and U is an open cover then we denote htop(U , T ) = hc(U , T ).
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The next theorem was proved in [GW] for topological dynamical systems and mea-
surable covers. We give here a simple proof for the non topological case that uses the
definition of heµ(U).

6.1. Theorem. hµ(U) ≤ hc(U).

Proof. First, if the system is ergodic, then hµ(U) = lim 1
n
logN (Un−1

0 , 1
2
) and asN (Un−1

0 , 1
2
) ≤

N (Un−1
0 ), we have

hµ(U) ≤ lim
1

n
logN (Un−1

0 ) = htop(U)

as desired. In the non ergodic case, let µ =
∫
µxdµ(x), be the ergodic decomposition of

µ. By theorem 5.1, hµ(U) =
∫
hµx(U)dµ(x), so from the first part we see that hµ(U) ≤

hc(U). �

Remark: Another simple proof of the above, uses the definition of h−µ (U):

Hµ(Un−1
0 ) = inf

α�Un−1
0

Hµ(α) ≤ inf
α�Un−1

0

log|α| ≤ logN (Un−1
0 )

⇒ hµ(U) = lim
1

n
Hµ(Un−1

0 ) ≤ lim
1

n
logN (Un−1

0 ) = hc(U).

From this stage, until the end of this paper we assume that (X,T ), is a t.d.s. We denote
by MT (X), the set of T -invariant probability measures on X and by Me

T (X), the set of
ergodic ones. Also CoX , will denote the set of finite open covers of X.

In [BGH], the following theorem was proved:

6.2. Theorem. (Theorem 1 in [BGH]): If U ∈ CoX , then there exists µ ∈ MT (X), such
that hµ(U) ≥ htop(U).

In light of theorem 6.1 we have that for every U ∈ CoX , one can find a measure µ ∈
MT (X), such that hµ(U) = htop(U). In fact theorem 7 in [HMRY] now becomes:

6.3. Corollary. for every U ∈ CoX , one can find a measure µ ∈ Me
T (X), such that

hµ(U) = htop(U).

Proof. Choose µ ∈ MT (X), such that hµ(U) = htop(U), and let µ =
∫
µxdµ(x), be its

ergodic decomposition. We know that

htop(U) = hµ(U) =

∫
hµx(U)dµ(x)

and that hµx(U) ≤ htop(U). So we must have hµx(U) = htop(U) for [µ] a.e x. �

We conclude from the above, the classical variational principle:
First we state a technical lemma, taken from [Ye].

6.4. Lemma. For any ε > 0, µ ∈ MT (X) and α = {A1 . . . AM} ∈ PX , there exists an
open cover U ∈ CoX , such that for every partition β � U one has Hµ(α|β) < ε.

6.5. Theorem. (The Variational Principle):

(a) For every µ ∈MT (X), hµ(T ) ≤ htop(T ).
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(b) supµ∈Me
T (X) hµ(T ) = htop(T ).

Proof. To prove (a), we first show that for each µ ∈ MT (X), hµ(T ) = supU∈CoX hµ(U , T ).
If this is done, then from theorem 6.1, we get

hµ(T ) ≤ sup
U∈CoX

htop(U , T ) = htop(T ).

It follows from the definition, that for any cover U of X, we have hµ(U , T ) ≤ hµ(T ), so one
inequality is clear. For the other inequality, fix a partition, α = {A1 . . . AM}, of X and
ε > 0. We need to find an open cover, U , of X, such that hµ(α, T ) ≤ hµ(U , T ) + ε. By the
preceding lemma and from the fact that for any β ∈ PX one has hµ(α) ≤ hµ(β) +H(α|β)
we have U ∈ CoX , such that

hµ(U , T ) = inf
β�U

hµ(β, T ) ≥ inf
β�U

(hµ(α, T )−Hµ(α|β)) ≥ hµ(α, T )− ε.

To prove (b), note that from (6.3) we know that for any U ∈ CoX , we can find µ ∈Me
T (X),

such that hµ(U , T ) = htop(U , T ). This gives us

sup
µ∈Me

T (X)

hµ(T ) ≥ htop(U , T )⇒ sup
µ∈Me

T (X)

hµ(T ) ≥ sup
U∈CoX

htop(U , T ) = htop(T ).

Together with (a), we get equality, which is (b). �
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