MEASURE THEORETICAL ENTROPY OF COVERS
URI SHAPIRA

ABSTRACT. In this paper we introduce three notions of measure theoretical entropy of
a measurable cover I in a measure theoretical dynamical system. Two of them were
already introduced in [R] and the new one is defined only in the ergodic case. We then
prove that these three notions coincide, thus answering a question posed in [R] and
recover a variational inequality (proved in [GW]) and a proof of the classical variational
principle based on a comparison between the entropies of covers and partitions.

1. INTRODUCTION

In this paper a measure theoretical dynamical system (m.t.d.s) is a four tuple (X, B, u, T'),
where (X, B) is a standard space (i.e isomorphic to [0, 1] with the Borel o — algebra ,u is
a probability measure on (X, B) and 7T is an invertible measure preserving map from X
to itself.

A topological dynamical system (t.d.s) is a pair (X, 7T'), where X is a compact metric
space and T is a homeomorphism from X to itself.

In [R] the author introduced two notions of measure theoretical entropy of a cover, both
generalizing the definition of measure theoretical entropy of a partition and influenced by
[BGH]. Namely,

(1) bt (U) = infursiha(a)
(2) h,(U) = lim%z’nfokugfl H,(«)

o
It was shown there among other things that h; (i) < hf(U) and that in the topological
case (i.e a t.d.s and an open cover), one can always find an invariant measure p such that
hy,(U) = hyop(U). This generalizes the result from [BGH] asserting that in the topological

I
case one can always find an invariant measure p such that h:[ (U) > hop(U)

The question whether h (U) = b} (U) arose. In [HMRY] the authors continued the re-
search on these concepts and proved, among other results, with aid of the Jewett-Krieger
theorem, that if there exists a t.d.s, an invariant measure p and an open cover U such
that h, (U) < hf(U) then one can find such a situation in a uniquely ergodic t.d.s.
Recently, B.Weiss and E.Glasner [GW] showed that if (X, 7T’) is a t.d.s and U is any cover,
then for any invariant measure p h(U) < hyp(U) and so combining these results one
concludes that for a t.d.s and an open cover we have that h (U) = h; (U).

* Part of the author’s MS.c thesis at the Hebrew University of Jerusalem.
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The measure theoretical entropy of a partition o in an ergodic m.t.d.s can be defined
as: limLlogN (aj™", €), where 0 < € < 1 and M (af ', €) is the minimum number of atoms
of af ™! needed to cover X up to a set of measure, less than e. (See [Ru]).

In this paper we follow this line and in section 4 define a notion of measure theoreti-
cal entropy for a cover U of an ergodic m.t.d.s as hS(U) = lim=logN (U5 ™", €) (where
0 < e < 1). We prove (Theorem 4.2) the existence of the limit and its Independence of ¢,
in a different way from [Ru| using Strong Rohlin Towers. This can serve as an alternative
proof of the fact that the above definition of measure theoretical entropy of a partition in
an ergodic m.t.d.s is well defined.

We show in a direct way that in the ergodic case the three notions: h, (U), hf(U), hs,(U),
coincide (Theorems 4.4, 4.5), and from the ergodic decomposition for h (U), ! (U),
proved in [HMRY], we deduce that h, (i) = h}(U) in the general case (Corollary 5.2),
and so, we can denote this number by h, (U, T) or h,(U).

We also get an immediate proof of a slight generalization of the inequality h,(U) < hyo,(U),
mentioned earlier, from [GW], to the non topological case (Theorem 6.1).

Acknowledgements : This paper was written as an M.Sc thesis at the Hebrew Uni-
versity of Jerusalem under the supervision of prof’ Benjamin Weiss. I would like to thank
prof” Weiss, for introducing me to the subject and for sharing with me his and Eli Glasner’s
valuable ideas.

2. PRELIMINARIES

Recall that in the following a measure theoretical dynamical system, (m.t.d.s), is a four
tuple (X, B, u, T'), where (X, B) is a standard space, p is a probability measure on (X, B)
and T is an invertible measure preserving transformation of X.

2.1. Definition.

e A cover of X is a finite collection of measurable sets that cover X.

e The collection of covers of X will be denoted by Cx

e A partition of X is a cover of X whose elements are mutually disjoint.

e The collection of partitions of X will be denoted by Px.
Usually we denote covers by U,V and partitions by «, 3,y etc.

e We say that a cover U is finer than V (U > V) if any element of ¢/ is contained in
an element of V.

e For any U € Cx and k € Z we denote by T*(U) the cover whose elements are the
sets of the form T*(U) where U € U.

e We define the join, U V V, of two covers U, V, to be the cover whose elements are
sets of the form UNV where U e Y and V € V.

e When the transformation 7 is understood we denote, for [ > k, the cover T=*(U)V
T-® DU - v T7HU), by UL



MEASURE THEORETICAL ENTROPY OF COVERS 3

2.2. Definition. For 0 < ¢ < 1 define H(6) = —6logd — (1 — )log(1 — §). Note that
l’img_,oH((S) = 0.

In the sequel, we will prove some combinatorial lemmas and often we will encounter
the expression > s ([;) We shall make use of the next elementary lemma:

. ) K
2.3. Lemma. (lemma 1.5.4 in [Sh1]): If 6 < 3 then 37,5 () < 2H ()

2.4. Definition. A m.t.d.s (X,B,pu,T) is said to be aperiodic, if for every n € N,
p({z|Tmz = x}) = 0.

An ergodic system which is not aperiodic is easily seen to be a cyclic permutation on a
finite number of atoms.
One of our main tools in practice, will be the Strong Rohlin Lemma ([Sh2] p.15):

2.5. Lemma. Let (X,B,u,T) be an ergodic, aperiodic system and let o € Px. Then for
any 6 > 0 andn € N, one can find a set B € B, such that B,TB ..., T" 'B are mutually
disjoint, yu( 371 T'B) > 1—0 and the distribution of o is the same as the distribution of
the partition o|p that o induces on B.

The data (n,d, B, «) will be called, a strong Rohlin tower of height n and error § with
respect to a and with B as a base.

3. MEASURE THEORETICAL ENTROPY OF COVERS

Let (X, B, i, T) be am.t.d.s. The definitions and proofs in this section were introduced
in [R].
3.1. Definition. for U € Cx we define the entropy of U as:
H,(U) = inforuH, ().
3.2. Proposition.

(1) If U,V € Cx then H, (U V) < H,(U) + H,(V).
(2) For everyU € Cx H,(T~'U) = H,(U)

3.3. Corollary. IfU € Cx then the sequence H,(U;™") is sub-additive.
3.4. Corollary. IfU € Cx then the sequence %HM(Z/{(?_l) converges to infn%Hu(Z/{(?_l).

Two ways of generalizing the definition of measure theoretical entropy of a partition to
a cover are:
3.5. Definition. If i/ € Cx, define
(1) hy (U, T) = lim=H,(Ug™").
(2) iU, T) = infagg hyu(a, T).
When 7' is understood we usually omit it and write h (U), b} (U).

We shall see later that in fact h, (U) = ht(U).
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3.6. Proposition.
(1) hy, (U) < b (U).

n

(2) for any m € N h;(U,T)lz %h;(blg”_l,Tm)
(3) h, (U,T) = limp=hf Uy, T™)

4. THE ERGODIC CASE

Throughout this section, (X, B, i, T'), is an ergodic m.t.d.s.
For U € Cx, we denote by N(U, e, 1), the minimum number of elements of U, needed
to cover all of X, up to a set of measure, less than e. When g is understood we write
N(U,e).

By a strait forward calculation one deduces from [Sh1] p.51 the following;:

4.1. Theorem. If (X, B, u,T) is an ergodic m.t.d.s and o € Px, then for any 0 < e < 1,
hu(o, T) = limilogN (ag ™" €).

In view of this result, a natural way to generalize the definition of measure theoretical
entropy of a partition to covers will be the following:

1
h,(U,T) = limﬁlog/\/'(ug_l, €).

Where 0 < € < 1. In order to do so we have to show that the above limit exists and is
independent of e.

4.2. Theorem. For any 0 < € < 1, the sequence %logN(L{g’l, €) converges and the limit
15 independent of €.

In order to prove this theorem we shall need a combinatorial lemma. Let us first
introduce some terminology (in first reading the reader may skip the following discussion
and turn to the discussion held after the proof of Lemma 4.3):

e We say that two intervals in N, I, J are separated if there is n € N such that for
anyi1 € [,j€ Jwehavei<n<jorj<n<i.

e We say that a collection {I;};c4 of intervals in N is a separated collection if any
two of its elements are separated.

e We say that a collection {I;};ca of subintervals of an interval [1, K] is a (), ¢)
separated cover of [1, K] (for 0 < A < 1, 0 < €), if it is separated and

Ul
||—I{’ — )\| < €.
e Given a vector X = (\;...\;), we denote

l

VT(X) = H(1 - )‘j)

j=r
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or just v, when X is understood. For r > [ we set v, = 1. Note that for J <l we
have:

In the following combinatorial lemma, we will be given [ separated collections {I. f Fiea,,
j = 1...1 of subintervals of a very long interval [1, K]. The knowledge about these
collections is that the members of the j’th collection all have the same length, N;, N; <<
Ny - -+ << N; and every collection is very ”equally distributed” in [1, K] in some sense.
We would like to extract, from these collections, a separated collection that will cover as
much as we can, from [1, K].
Let us denote by \;, the percentage of [1, K], that is covered by the j'th collection and
by X, the corresponding vector. Then, A, = 1 — 1 percent of [1, K] is covered by {I'}.
The complement is of size Kv; and we could cover A\;_; percent of it with the {I/7'}’s.
By now we covered K(1 — ;1) and we could cover \;_, percent of the complement by
the {I'"?}’s. So by now we covered K (1 — v;_5) of [1, K]. We go on this way and extract
a separated collection that covers 1 — v percent of [1, K]. Let us now make these ideas
precise.

4.3. Lemma. For any l > 0, there exists a positive function ¢ = p(Ny... Ny ..., €)
(where Ny < Ny--- < Ny € N, ;€ > 0) such that

lim sup lim sup lim sup . . . lim sup lim sup ¢ (N;, 7;, €) = 0. (%)

e—0 N1—00 n1—0 Nj—o0 m—0

and such that if 0 < X\; <1j=1...1 and {Il-j}ieAj are separated collections of subintervals
of [1, K] that satisfy:
(a) For every 1 < j <1 |I!| = N;.
(b) For every 1 < j <1 {I} is a (\;, €)-separated cover of [1, K].
(c) For every 0 < j < r <1, the number of subintervals, J, of [1, K], of length N,.,
which are not (\;, €)-separately covered by {]Zj C J} is less than n,. K.

then there are sets A; C A; j = 1...1, such that {{Iij}iegj}é-:l is a separated collection
and [1, K] is (1 — 11 (X)), o(Ni, i, €))-separately covered by {{]g}ieAj}é‘:l-

Proof. We will build the fij’s by recursion, starting with j = [. Define A; = A;. Then
from (b) we have that |% — N| < e. So if we will define f;(N;,7m;,€) = €, then f
satisfies (%) and [1, K] is (A, fi(IV;, ms, €))-separately covered by {If}idl. Now, sup-
pose we have defined A4, .. .fljﬂ and positive functions f;... fj41, that satisfy (x), such
that {{I]};c4 }.—ji1, is a separated collection and for every j +1 < r < [, [1,K] is
(ArVrg1, fr(Ni,mi, €))-separately covered by {17}, z . Define now,

A; = {i € A;| I is separated from I} eeq r=g+1...1}.
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We want to estimate the size of /Ij.

Estimation from below: Choose j 4+ 1 < r < [ and divide the members of {I'}, ci, to
good ones and bad ones according to (c), i.e, I is good if it is (A;, €)-separately covered
by {I! € I"}. We have at most 7,K, I’s, which are bad and at most |A |, I'’s, which

are good. Every bad I! rules out at most NT +24’s in A; from being in A Every good
I7 rules out at most {=(\; + €) + 2, i’s in A from being in A;. In total, the maximum
J

number of ¢’s in A; that are not in fij is at most:

Ny
> IO+ 42+ k(N 2) = (o
r=j+1 J

Note that because [1, K] is ()\TVT_H, fr)-separately covered by {I'} we must have

ied,

K
‘Ar’ < F()\rl/r-i-l + fr)

Using this we get:

(**) S Z E(ATVT_H + fr)(%()\] + 6) + 2) + HTK(& + 2)

= N, N; N;
!
2K K
= A Vr—i-l()‘ + 6) + (>‘j + E)fv" _(ATVT-H + fr) + —UrNr + 277TK
; J i NT Nj
r=j+1
!
K
= FAJ'( Z )\TVT+1)
J r=j+1
K N;
t— > Advia + N+ Of 22 (Avsr + £) + 0 (Ne +2N))} = (R)
Nj r=j+1 Nr
as mentioned earlier Z i11 MrVrp1 = 1 — v so we have that:
- K
A5 2[4, = (R) > FO‘ -6 -

K N;
- Fj{)\jyj — {e~|— ;rl{e)\ V1 + (N e fr + QNT()\ Vet + fr) + 0. (N, + 2N; )}}}
note that

l

e+ > v + (N +e)fr+2N

et + £7) 4 (N, + 28
r=j+1

l

Set D fer (L af + 230 (14 £) (N, +2N,)
r=j+1 "



MEASURE THEORETICAL ENTROPY OF COVERS 7

so if we will denote the last expression by f] (N;,m;, €), then we see that fj satisfies (x)
and | 4,] > £ (v - ).

Estlmatlon from above: For every j + 1 < r <[, we have that |/i | > £()\ Vpp1 — fr)
and the number of bad I]’s is at most 7, K, so we must have at least &£ (>\ Vrp1— fr) =1 KK
good I!’s. Every good I7, rules out at least %;“ (Aj—€)i'sin A, from bemg in A;. So the

number of ¢’s in A; that are not in fij is at least:

!
Z %(Aj — 6){%()\7“7/7"4-1 — fr) =K}

r=j+1"J

and so
!

) N, K
Al <141 = > ﬁ(/\j - E){F(/\TVT-H — fr) =K}
r=j+1 "7 "
l

O+ = 30 {5 (WO = ) = i = £) = Gy = )}

r=j+1

{ i (1 - i /\rw+1> +e+ i (Ajfr et = fr) 0 Ne(Ay = €>>}

r=j+1 r=j+1

< 5 e S (et )+ nenii4 )}

r=j+1

so if we will denote
A !
LNom e = e+ 3 (fot el f) 4N (1+6) )
r=j+1
then f; satisfies (%) and |A4;| < & ()\ Vit1 + f]). Define f; = mazx(f;, f;) and then we
have that f; satisfies () and
Aj|N;
|| 2 s = Ayl <

We have defined A; C A; and a positive function f;, that satisfies (*), such that H{I Y ieq e
is a separated collection and [1, K] is (\;vj11, fj)-separately covered by {Ig}iegj.

We continue this way and define sets Aj C A; and positive functions f;, j =1...[, such
that {‘{[f}i&{j }i_1, is a separated collection and [1, K] is (A;vj41, f;)-separately covered
Note that this means:

l ! l l l
K(ZAjyj+1 - Zfr) <|Jyr= K<Z)\jyj+1 +Zfr)
j=1 j=1 j=1 j=1 j=1

i€14~j
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and so, if we will define ¢ = " f;, then ¢ satisfies (x) and {{Iij}ieﬁj Yo isa (1 -, e)-
separated cover of [1, KJ. O
Before turning to the proof of theorem 4.2, let us present some terminology. In the
following U = {U;...Uy}, is a cover of X. For any p > 0, we can find a partition
B = U, such that N(U, p) = N (5, p). Namely, we choose a subset of U, of N = N(U, p)
elements, that covers X up to a set of measure < p, {U;;...U;n} and define C; = Uy,
C; =U;\ Uin_:ll Uim, j =2...N. The Cj’s are disjoint, C; C U,; and Uf[ C; = Ujvzl Ui
Extend the collection {Cj}j-vzl to a partition, [, refining U, in some way. Then, because
B = U, we have N(3, p) > N and from our construction, it follows that N'(3, p) < N.

e We call such a partition, a p-good partition for U.

If (X,B,u,T) is aperiodic and N € N, p,§ > 0 are given, then for a p-good partition /3,
for L{év ~! we can construct a strong Rohlin tower with height IV + 1 and error < 0. Let
B denote the base of the tower and let B C B be a union of N(3, p) atoms of 3|5 that

covers B up to a set of measure, less than pu(B).

e We call (5, B,B)7 a good base for (U, N, p,?).

e For aset J C N, a (U, J)-name, is a function f:J — {1...M}.
o fisamnameof v € X, if w € (o, T/ Uy).

e We denote the set of elements of X with f as a name by Sy.

e A set of (U, J)-names, {f;}, covers aset C € B, if C C |, Sy,.

In the sequel, we will want to estimate the number of elements of 2!, needed to cover
a set C' € B, i.e, we will want to estimate the number of (U, [0, N — 1])-names needed to
cover C. The usual way to do so is to find a collection of disjoint sets J; C [0, N — 1]
i =1...m, that covers most of [0, N — 1], such that we can bound the number of (U, .J;)-
names needed to cover C. If we can cover C' by R;, (U, J;)-names, {f:} |, then the set
T'={f:[0,N—1] — {1...M}| fls, € {fi}F_.}, of (U,[0, N — 1])-names, covers C
and contains [] R; - MN~2 /il elements.

This situation occurs in our proofs in the following way: Let (3, B, B), be a good base
for (U,N,p,0) and K >> N. Set C to be the set of elements of X that visits B at
times i; < - -+ < iy, between 0 to K — N (under the action of 7). Then we can cover C
by no more than N(0, p), (U, [i;,i; + N — 1])-names. We can now turn to the proof of
theorem 4.2.

Proof. (theorem 4.2): If (X, B, u,T) is periodic, it follows from the ergodicity, that the
system is a cyclic permutation on a finite set of atoms and for every 0 < ¢ < 1 we
have lim%log/\/(ug_l,e) = 0. We assume, then, that the system is aperiodic and thus
we are able to use the Strong Rohlin Lemma. Given 0 < p; < p; < 1, we need to
show that the limits: lim2logN (Uy~", p;) @ = 1,2, exist and are equal. Note that for
every n, we have that N(U ™", p1) < N(UY™", p2) and thus limsuptlogN (U~ p1) <
limmf}tlog./\/’(ug_l, p2), so it’s enough to prove that

1 1
lz'msupﬁlogj\/’(b{g_l, p2) < limz’nfﬁlog./\/(ug‘_l, p1)-
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Let 0 < ¢ < %, be given and denote:
hO = lzmmf%log/\/(?/{g_l,pl), L= {n < N‘ ‘hO - %ZOQN(Ug_lapl)’ < 60}7
so L contains arbitrarily large numbers. Choose ¢ € N, large enough so that

1 ; 1 ¢ 1
(5(1 + p1)) logM < e, (5(1 +p1)) +e < 3 (%)
The towers construction: Remember the function ¢ from the combinatorial lemma
(Lemma 4.3). It satisfies:

lim sup lim sup lim sup . . . lim sup lim sup ¢(N;, 7;,€) = 0
e—0 N1—00 n1—0 Nyp—o0 n¢—0

so we can choose € > 0, small enough, such that

lim sup lim sup . .. lim sup lim sup ¢ (N;, n;, €) < €.
N1—00 m—0 Nyp—o0 n¢—0

Choose a small enough § > 0 (in a manner specified later). Choose Ny € L, large enough,
such that

limsup ... limsup lim sup ¢(N;, n;, €) < €.
m—0 Ny—oo  n¢—0

Find a good base (f, By, By), for (U, Ny, p1,9). Choose n; > 0, small enough, such that

lim sup limsup . . . lim sup lim sup ¢ (N;, m;, €) < €.
No—oo  1m2—0 Np—o0 1n¢—0

From the ergodicity, we can choose Ny € L, large enough, such that
e limsup,, ... limsupy, . limsup,, o @(N;, 7€) < €o.
o pu{z | |5 2020 X (T72) — (B < 5=} > 1=
Find a good base, (32, By, By), for (U, Ny, p1,8). Choose 1, > 0, small enough, such that

lim sup lim sup . .. lim sup lim sup ¢ (N;, n;, €) < €.
N3—o00 n3—0 Np—oo n¢—0

Again, from the ergodicity, we can choose N3 € L, such that

e limsup,, ... limsupy, ., limsup,, o @(N;, 7, €) < €o.

o 1{ | 55 202 X, (T72) = p(By)| < 5 5 = 1,2} > 1= 1.
In this way we construct, inductively, Ny < Ng--- < Ng (all from L), 71 ... 7, and good
bases (8;, B;, B;), for (U, N;, p1,0), such that ¢(N;,n;,€) < ¢ and if we denote

N.—N;
1 < ' T € . .

FJ:{J?HE Z:(:] xs, (T :c)—u(Bi)|<Ez:1...]—1}
then, p(F;) > 1 —n;.
Define

1 K_NJ K—Nj
€

Ex={a| 2 > xp(T2) > 1= |2 > xp,(T"2) —p(B)| < = j=1...0}

r=0 r=0 J
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From the ergodicity, we know that there is a Ky, such that, for any K > K,, we have
w(Ex) > pa. Fix K > Ky, we shall show that we can cover Eg, by "few” (U, [0, K — 1])-
names. For a fixed x € Ex denote

A;={0<m<K-N, |T"z € B;}

and for every i € Aj, let I! = [i,i + N; — 1].We claim that the collections {I/ }ZGA
Jj = 1...¢, satisfies conditions (a), (b), (c ) from the combinatorial lemma (lemma 4. 3)
with A; = N;u(B;). To see this, note first, that because the height of the j'th tower was

N; + 1, we have that each collection {7}, A, is separated.

(a) By definition |I7| =

(b) because x € Ej, we know that |+ SN xB,(T"x) — p(B;)| < 5= - and thus, | ==
Aj| < e. So the {[g}ieAj forms a (\;, €)-separated cover of [0, K — 1]

(c) For 1 < r </, we know from the fact that z € Ey, that — ZK N g (Tox) > 1=,
and thus we have = ZK N

N;lA;l
K

xre(T°x) < . If we use the deﬁnltlon of F,,, this becomes

Nr—Nj

1
—#{O<5<K N|3tsjsr—1lg Z X, (T )—u(Bj)IZNi}@?r
J

or equivalently
N.
#{OSSSK—NT|31§jST—1|FJ#{Z.|7:+S€A]'}—)\]‘|ZE}<T]TK
so if we choose 1 < j < r </, we must have
N;
#LTCIOK 1] 1] = Ny, [ B €T} = Al > 6} <K

In words, the number of subintervals of [0, K — 1] of length N,, J, which are not (\;, €)-
separately covered, by those Iij which are contained in J is less than 7, K, as we wanted.
Using the combinatorial lemma, we can choose for every x € Ef a separated collection
{r (@) }iea, }i_, that covers at least K (1 — n(X) — €0) elements of [0, K — 1]. Because
these collections are separated, there is a 1 — 1 correspondence between them and their
complements. Hence, the number of such covers is less than

K
s = 3 (5) e
i<(n+e) K
Fix such a collection {{Iij}i@;]_ }i—) and set

C={zeEx [{I](x)} ={I]} }.

From the construction we see that for every 1 < j < ¢ we can cover B; by no more
than 2Vi(hot<) (14 [0, N; — 1])-names, thus we can cover C' by no more than 2Vi(ko+<o)
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(U, I )-names. So the number of (i, [0, K — 1])-names, needed to cover C'is at most

~

H 2N h0+€0 |A | MK(V1+€0) _ 2(2 N |A |)(h0+60) MK(I/1+€0)

j=1
< of(hoteo) | prK(viten)
Finally we get from this and (*x) that
NUE, py) < 0K, N, €) - 2KUokeo) . ppK eateo)
and so

1 1
?ZOQN(Ug{_l’ pa2) < gl%ﬂb(K, Aj, €0) + ho + €0 + vilogM + eglogM.

If, in the construction of the towers, we choose ¢ small enough and N; large enough, we
can ensure that A\; = N;u(B;) > ©=£ and thus 1 —\; < 22 = 1y < (22 and so, from
() we have that

—_

viloghM < € v+ € < B

hence, from lemma 2.3
WK, Ay, e0) < 2K HTFD )
hence
L+ p1y,

_lOgN(uK 17p2) < ho + 60(2 + lOgM) + H((

K )+€0):>

T+p1y,

hmsup ElogN(MOK L pe) < ho+ €0(2 4 logM) + H((—2) 4+ «)

letting ¢ — oo and ¢y — 0 we get
1
lim sup —logN (U, py) < by
Kk K

as desired.
O

After proving theorem 4.2, we can define, for an ergodic m.t.d.s, (X,B,u,T) and a
cover U = {U; ... Uy} of X, a notion of measure theoretical entropy in the following way:

1
hi,U,T) = limﬁlog/\/'(ug_l, €) where 0<e<]l1.

Often we omit 7" and write hS,(U).

4.4. Theorem. hf,(U) = hf(U)
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Proof. As before, if the system is periodic then hf(U) = hf(U) = 0. We assume, then
,that the system is aperiodic. For every partition a > U, n € N and 0 < € < 1, we have
that N(Uy ™", €) < N(ag™, €) and therefore

1 1
he(U) = lim—logN Uy ", €) < lim—logN (af ", €) = hy(c)
n n

= hy,(U) < h;(U)

To prove the other inequality, we shall show that for a given 0 < € < }1 and n € N we
have:

W) < logN Uy ™) + V- Tog + H(VE).  (+)

Once we prove (), we are done, for letting n — oo we get hf (U) < he(U) + /e - logM +
H (/) and now, letting ¢ — 0 we get b} (U) < he,(U) as desired.
Proof of (x): choose § > 0, such that e46 < }l and find a good base (3, B, B) for (U, n, €, ).

(Now we take B to be a base for a strong Rohlin tower of height N and error < § and
not of height N + 1 as before). Set N = N (U) ", ¢), so B is the union of N elements of
B|z. We index these elements by sequences i .. .1%,_1, such that if B, , , is one, then

T9(Biy..in_,) C Ui, for every 0 < j < n —1. We have that (X \ Uy~ "Ti(B)) < e+4.
Let & = {A;... Ay} be the partition of

n—1
E=|J1(B
0
defined by

U{T ioin 1) | 7€ 10,n —1]. 45 =m}.

Note that A, C Upn, for every 1 < m < M. Extend &, to a partition, «, of X, refining
U, in some way. Set n* = €+ 0 and define for every k > n fi(x) = %le_l xe(T?z). We
have that 0 < fy <1 and [ fi > 1 —7?, so if we will denote:

Gr = A{z | file) > 1—n}

“(GZ)S/zl_ka/l—fkgnQ

= uw(Gy) = 1—n.

We shall show that we can cover Gy, by "few” («, [0, k—1])-names. Partition G}, according
to the values of 0 < i < k — n, such that 7%z € B. Note that if x € G, and 0 < 41 <

+ < iy < k—n, are the times in which x visits B, then the collection {[i;,i; +n—1]}7,
covers all but at most nk+2n elements of [0, k—1]. Because each element of this partition
defines a collection of subintervals of [0,k — 1], of length n, that covers all but at most

then,
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nk 4 2n, elements of [0,k — 1], in a 1 — 1 manner, we have that the number of elements
in the partition of Gy, is at most

(ko) = Y (?)

J<(m+22)k

We fix an element C' of this partition of G, and want to estimate the number of (a, [0, k —
1])-names, needed to cover it. If 0 < iy < .-+ < i, < k — n are the times elements of
C visit B, then we need at most N, («, [i;,7; +n — 1])-names, to cover C. Because the

size of [0,k — 1] \ U;[¢;,i; +n — 1], is at most nk + 2n, we need at most Nn - Mrk+2n
(cv, [0, k — 1])-names, to cover C. Finally, we have that we can cover G, by no more than:

(k) - Nw - M
(o, [0,k — 1])-names. Because u(Gy) > 1 — n, this means that:

1 1 1 2
ElogN(O/S‘l, n) < Llog(k,n,m) + ~logN + (n + fn)logM-

Recall that once (1 + 27”) < %, we have ¢ (k,n,n) < 2k-HM+5) and so

hu(a) = lim%log/\/(a’é_lv n) < %log/\/'(bion_l, €)+n-logM + H(n)
SO
hiU) < %log./\/ U €) +Ve+ 6 -logM + H(Ve +9)
Letting § — 0 we get

W) < logN @™, )+ V- logh + H(VE)

as desired.

4.5. Theorem. h(U) = h (U)

We already know that hf(U) > h, (U) (Proposition 3.6), so we only need to prove the
other inequality. Before we turn to the proof, let us present some terminology and prove
a combinatorial lemma.

Let A, be a finite alphabet of M letters, k,n e Nk >>n,0<d < 1and w = wg_l, a
word of length k£ on A. (The symbol a? stands for a, ...as). Denote I' = A™.

e An (n,k,)-packing is a pair C = (ig" ', 7¢"") where 0 <i; <k —n, y; €T, j=

0...m—1, i +n—1<ij and 5% > 1—6. (We think of an (n, k, §)-packing

as instructions to "almost” write a word of length k, we just fill it with the v;’s,

where ; starts in the i; letter and there will be no more than & letters to add.)

e An (n,k,§)-packing for w, is an (n,k,d)-packing, C = (ig"~ ', v~ '), such that

ij4n—1
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e if 11, o are probability distributions on I' then

[p1 — pol| = max 1 (7y) — p2(y)]-

e An (n,k,d)-packing, C = (ig"',70" '), induces a probability distribution on T,
denoted by Fe, by the formula Pe(y) = 2#{0 < j <m —1|~=~;}.

e If 1 is a probability distribution on I" and C is an (n, k,§)-packing, then we say
that C is (n, k, 0, ), if ||u — Pe|| < 0. We say that w is (n, k, d, p), if there is an

(n, k, §)-packing for w, which is (n, k, §, ).

4.6. Lemma. If u is a probability distribution on I', with "average entropy”

ho = —% > u)logu(y)

vyel

then there exists a positive function ¢(0), such that p(§) — 0 as 6 — 0 and such that if
0<d< %, then for any k > n, the number of words w € A*, which are (n,k,d,p), is at
most 2k(h0+¢(6))

Proof. Fix k > n. We want to estimate the number of words w = wf ™ € A*, that are
(n, k, 6, ). For every such word, w, we can choose an (n, k, §)-packing, C = (iJ"*, 70" 1)
which is (n, k, d, pt). In this way we define a map

m:{w e A |wis (n,k,6,1)} — {C| Cisan (n,k,b,u) — packing}

If C = (i~ ", 75" "), is an (n, k, 0)-packing, then %™ > 1— 4. This means that [7~(C)| <
|A|* = M. So we have that

#{we A |wis (n,k,0,pn)} < M*4{C | Cisan (n,k,d, 1) — packing}.
Let us now estimate the number of (n, k, d, uu)-packings, C = (i~ ', vo1):
The number of sequences, if" " , such that 0 < iy <k—n,ij+n—1<ij,and 5% >1-0
is at most Y, g, (];) From lemma 2.3 we know that for § < %, this sums to something
Fix such a sequence 7§ "'. Let us now estimate the number of sequences, 75!, such that
the (n, k,d)-packing, C = (ig"" ', 7" ™"), is (n, k, 6, ).
Denote v = @7y, the product measure on I'™. If 47*~! € ™ then
1) — H M(’Y>#{0§j§m_1 7=} — 92 (4lu(m 0y #L0Si<m—=1 | y=n;}-logn(v)

yel’

v(vy"

— QM () £0} L #{0<j<m—1 | v=7;}-logu(v)

Now, the function f : {(z,)yer € R' | 3.2, =1} — R, defined by
F@&)="Y_  xy-logu(y)

{7vlu()#0}
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is continuous and so there is a positive function (9), such that ¢(§) — 0 as § — 0 and if

—

max, |z, — ()| <9, then |f(Z,) — f(u(y))| < ¥(0) (note that ¢ depends only on n, p).
So if 45" € T"™ is such that C = (ig~ ', 75" "), is a (n, k, &, u)-packing, it follows that

1 . —y
ngnfl) — M X ol #0} m #OSI<Sm—1 [ y=7;}-lognu(v)

< 97 (S (o) BTN —5(5)) < oh(~ho— L)

Where the last inequality follows from the fact that m < % and the definition of hy. We

conclude that an upper bound for the number of such sequences v;*~ " is k(ho+) Tf we
collect these estimations, we get to the conclusion that for 0 < § < %

Hlwe A [wis (n, k, 0, 1)} < MO . 2Ok ok(ho+%2) < oh(ho+ 2 1 H (8)+6-logM)

s0 ©(8) = 9 L H(8) + 6 - logM is our desired function.

n

O

Proof. (of theorem 4.5): We want to show that for an ergodic system (X, B, u,T) and
a cover U = {U;... Uy} of X, we have ht(U) < h,(U). As before, if the system is
periodic, then, from the ergodicity, it must be a cyclic permutation on a finite set of
atoms. Therefore hf(U) = h (U) = 0. In the aperiodic case we can use the Strong
Rohlin Lemma.

Let € > 0. We shall show that hf(U) < h, (U) + 2¢. From the definition of A (U), we
can find n € N and a partition 8 = U4y~", such that LH,(3) < h,U)+e As 3= Uy,
we can index the elements of 3, by sequences ig_l =1g...1,—1, such that if Bigq, is one,

then Tjéig—l CU;; j=0...n—1. We can assume that each sequence, z'g_l, corresponds

to, at most one element of 3, for otherwise, we could unite these elements and get a
coarser partition 3/, still refining ¢y, such that LH,(6') < LH,(8) < h, (U) + €. Set
I'={1...M}". So the elements of 3 are indexed by I". (if v € T",does not correspond to
an element of (3, in the above way, we set Bw = (). In this way, the partition (3, defines a
probability distribution, v, on I, defined by v(v) = u(B,) and we have that hy = LH,(B),
is the ”average entropy” (see Lemma 4.6) of v.

Choose 0 > 0 (in a manner specified later) and let F', be a base for a strong Rohlin tower
(with respect to () of height n and error< ¢%. Denote the atoms of 3|p by B, v € T,
(where B, = B, N F), and define a partition @ = {A,... Ay} of E = (JJ ' TVF, by
A, = U{TjBigfl |5 €{0...n—1}, i; = m}. Note that A,, C U,. Extend &, to a
partition « of X refining U, in some way. The set of indices of elements of a, A (the
alphabet in which a-names are written) contains {1... M} and we can always build «,
such that |A] < 2M. We slightly abuse our notation and denote I' = A™. In this way, v
is still a probability distribution on I'.

Claim: If 0, is small enough, then h,(a) < ho + €.

Once we prove this claim, we are done, because then

hi(U) < hy(a) < hg+ e < h (U) + 2.
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Proof of claim: For k >> n, we look at the function f(z) = ¢ ]g_l xe(T?z). We have
that 0 < fy <1 and [ fy > 1 — . Therefore

(5~,u({:c|1—fk(x)>1—5})§/ 1—fk§/1—fk§62
{z|1—fr(z)>1-46}

= p({z|fr(z) >1-0}) >1—0.
Denote, G¥ = {z|fx(x) > 1 —d}. For x € G¥, there are at most dk times 0 <i < k — 1,
such that Tz ¢ E. Define

k—n
G5 = {al [T 3 xa(T'2) — u(A)] < 6, A€ fleU{F}).

Let us see what can we say about the (a, [0,k — 1])-name of an element, x, of G} N G&.
Fix such an z and denote by iy < --- < 1,,_1, the times between 0 to kK — n in which z
visits F'. We have that 0 <i; <k —n, i;+n—1 < i;4; (that is because the height of the
tower is n). Except for at most 2n times (n at the beginning and n at the end), x visits
E, exactly in the times 4;...7; +n —1, 7 = 1...m — 1. Therefore, we must have

2n
=)
Denote the (a, [0,k — 1])-name of z by w = wi™ (w; € A), and V= Wi Wign-1 €T,
j=0...m—1. We have that C = (ig""',~4¢""") is an (n, k,§ + 2*)-packing for w. Let us
now see, what can we say about the distribution, FPp, this packing induces on I'.
For 0 <r <k —n, we have that 7"z € B, if and only if, thereis a 0 < j < m — 1, such
that r = i; and v = ;. Therefore, because = € G4

eVyel [1#{0<j<m—1ly=r}—puB,) <.

o |2 - u(F)| <5,

Note that u(F) > %‘5, so if 0 is sufficiently small, we can guarantee that |£ — ﬁ| would

be arbitrarily small and in turn we can guarantee that for every v € I’

ko1 B
o 0 <5 S m= 1y =) = 52 = 1Re) - v(0)
would be arbitrarily small. This is to say that ||Pz — v|| is arbitrarily small. We see that
there is a positive function ¢ (9), independent of k, such that ¢(§) — 0 as 6 — 0 and such
that, if z € Gy NG5 and w is its (, [0, k — 1])-name, then w is (n, k,¥(0) + 22, v).
Remember the function ¢, from lemma 4.6. There is an 79 > 0, such that for every
0 <n<mn ¢(m < e Choose k to be large enough so that 2* < 2 and the error, ¢,

2
of the tower to be so small, such that ¢(6) < %, and conclude, from lemme 4.6, that

the number of (o, [0,k — 1])-names of elements of G¥ N G% is at most 2¢("0*+<) From the
ergodicity, we know that for large enough k, u(G¥ N G%) > 1 — 26, so we have

n-mZ(l—&)k‘—2n:>¥21—(5+

1
hy(a) = lim%log./\/(ozlg_l, 20) < hg+e.

as desired.
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U

Remarks:

o If (X,T), is totally ergodic, i.e (X,T™), is ergodic for every n € N, then we
can look at expressions like hS Uy ', T™). It follows from the definition that
heU,T) = Lhe(Uy~",T™). This enables us to prove the last theorem without
any hard work done. We know from theorem 4.4, that h,(U,T) = hf(U,T)
and therefore hf (U, T) = Lhf(Ug~",T™). But then, proposition 3.6 (which is
elementary), gives: h, (U,T) = lim=h} Uy, T") = hf(U,T) and this gives the
desired result.

e The definitions of i} (U), h, (U), were introduced in [R] and discussed also in [Ye],

[HMRY]. There, a proof ofﬁ:heir equality was given only in the case where (X, T),
isat.d.s, and U is an open cover. The proof was based on a reduction to a uniquely
ergodic case and then a use of a variational inequality, proved in [GW].

e The definition of hf,(U) is new. This definition helps us to prove directly a slight
generalization of the variational inequality ,proved in [GW] and mentioned above,
to the non-topological case. (T'heorem 6.1).

e The proofs of theorems 4.2, 4.4, 4.5 and lemma 4.6 are based on ideas of B.Weiss

and E.Glasner

5. ERGODIC DECOMPOSITION FOR h;j, h,

5.1. Theorem. (Proposition 5 in [HMRY]): Let U = {U; ... Up}, be a cover of X, and
p= [ pedu(z), the ergodic decomposition of p with respect to T. Then

BHU,T) = / B U T)dp(z) b (U, T) = / b U, T)dp(x)
5.2. Corollary. h(U) = h,(U)
Proof. Tt follows immediately from the above and the ergodic case (Theorem 4.5) U
From now on we will denote the number Af (U, T) = h (U, T)(= h{,(U,T) in the ergodic
case), simply by h,(U,T) or h,(U) or h(U), when no ambiguity can occur.

6. VARIATIONAL RELATIONS
As always, let U = {U;...Upy}, be a cover of the m.t.d.s (X, B, u,T). We can define
the ” combinatorial entropy’ of U as

1
he(U,T) = limnﬁlog/\/'(ugf_l)

where, AV(V), is the minimum number of elements of V', needed to cover the whole space.
Note that the sequence logN ('), is sub-additive, hence the limit exists. If (X, T) is a
t.d.s and U is an open cover then we denote hy, (U, T) = h.(U,T).
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The next theorem was proved in [GW] for topological dynamical systems and mea-
surable covers. We give here a simple proof for the non topological case that uses the

definition of A, (U).
6.1. Theorem. h,(U) < h.(U).
Proof. First, if the system is ergodic, then h, (U) = limtlogN (U ™", 1) and as N (U, 1) <
NUG), we have
hulU) < lim - ogN (U5 ") = huoy W)

as desired. In the non ergodic case, let u = [ p,du(z), be the ergodic decomposition of
p. By theorem 5.1, h,(U) = [ h,, (U)du(z), so from the first part we see that h,(U) <
he(U). O

Remark: Another simple proof of the above, uses the definition of h  (U):
H,Uy "= inf H,(a)< inf logla| <logN(Uy™)
arzupt Uyt
1 1
:$MW%ﬂm%%ﬂﬁﬂShm#mNMTU=MW)

From this stage, until the end of this paper we assume that (X, T, is a t.d.s. We denote
by Mz(X), the set of T-invariant probability measures on X and by M%(X), the set of
ergodic ones. Also C%, will denote the set of finite open covers of X.

In [BGH], the following theorem was proved:

6.2. Theorem. (Theorem 1 in [BGH]): If U € C%, then there exists p € Mp(X), such
that b, (U) > huop(U).

In light of theorem 6.1 we have that for every U € C%, one can find a measure p €
Mp(X), such that h,(U) = hp(U). In fact theorem 7 in [HMRY] now becomes:

6.3. Corollary. for every U € C%, one can find a measure p € M5(X), such that
hu(U) = hiop(U).

Proof. Choose p € My(X), such that h,(U) = hp(U), and let p = [ p,dp(z), be its
ergodic decomposition. We know that

hrnlld) = ) = [ by U)n0)
and that h,, (U) < hyp(U). So we must have h,, (U) = hy,(U) for [p] a.e z. O

We conclude from the above, the classical variational principle:
First we state a technical lemma, taken from [Ye].

6.4. Lemma. For any ¢ > 0, up € Mp(X) and a = {A;... Ay} € Px, there exists an
open cover U € C%, such that for every partition 3 = U one has H,(a|3) < e.
6.5. Theorem. (The Variational Principle):

(a) For every p € Mp(X), hy(T) < hiopy(T).
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(b) SUP e me. (X) hu(T) = hiop(T).
Proof. To prove (a), we first show that for each p € Mz (X), hy(T) = supyecq hu (U, T).

If this is done, then from theorem 6.1, we get
hy(T) < sup hioy(U,T) = hioy(T).
uecsy,

It follows from the definition, that for any cover U of X, we have h,(U,T) < h,(T'), so one
inequality is clear. For the other inequality, fix a partition, « = {A;... Ay}, of X and
€ > 0. We need to find an open cover, U, of X, such that h, (o, T) < h,(U,T)+e€. By the
preceding lemma and from the fact that for any § € Px one has h,(«) < h,(8)+ H(a|f)
we have U € C%, such that

(U T) = inf y(0.T) > nf (0, T) ~ Hy(0]5) = hy(0,T) —
To prove (b), note that from (6.3) we know that for any U € C%, we can find p € M%(X),
such that h,(U,T) = hi,(U,T). This gives us

sup  hu(T) > hop(U,T) =  sup  hu(T) > sup huop(U,T) = hyop(T).

HEME(X) HEME(X) UeC
Together with (a), we get equality, which is (b). O
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