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Abstract. The set of primitive vectors on large spheres in the eu-
clidean space of dimension d ≥ 3 equidistribute when projected on the
unit sphere. We consider here a refinement of this problem concern-
ing the direction of the vector together with the shape of the lattice
in its orthogonal complement. Using unipotent dynamics we obtained
the desired equidistribution result in dimension d ≥ 6 and in dimension
d = 4, 5 under a mild congruence condition on the square of the radius.
The case of d = 3 is considered in a separate paper.

1. Introduction

Let d ≥ 3 be a fixed integer. Let Zd
prim be the set of primitive vectors in

Zd. Set

Sd−1(D)
def
=

{

v ∈ Zd
prim : ‖v‖22 = D

}

= Zd
prim ∩

(
√
DSd−1

)

,

where Sd−1 def
=

{

x ∈ Rd : ‖x‖2 = 1
}

. We would like to discuss the simultane-

ous equidistribution of the direction v√
D

∈ Sd−1 of the elements in Sd−1(D)

and the shape [Λv] of the orthogonal lattice

Λv = Zd ∩ v⊥.

To make this more precise fix a copy of Rd−1 def
= Rd−1 × {0} in Rd and

choose for every v ∈ Sd−1(D) a rotation kv ∈ SOd(R) with kvv =
√
Ded so

that kvΛv becomes a lattice in Rd−1. Note that

(1.1) [Zd : (Zv ⊕ Λv)] = D

since primitivity of v implies that the homomorphism Zd → Z defined by
u 7→ (u, v) is surjective and Zv ⊕ Λv is the preimage of DZ.

Therefore, kvΛv is a lattice in Rd−1 of covolume
√
D. In order to nor-

malize this covolume, we further multiply by the diagonal matrix av =

diag(D
−1

2(d−1) , · · · ,D
−1

2(d−1) ,D
1
2 ). Note that the set of possible choice of kv

is precisely SOd−1(R)kv and that av commutes with SOd−1(R). Recall
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that SLd−1(R)/SLd−1(Z) is identified with the space of unimodular lattices
in Rd−1 so that we obtain an element

[Λv]
def
= SOd−1(R)avkvΛv ∈ Xd−1 = SOd−1(R)\SLd−1(R)/SLd−1(Z),

which we refer to as the shape of the lattice Λv.
It is possible to obtain still a bit more geometric information from the

primitive vector v as follows. Given v ∈ Sd−1(D) choose w ∈ Zd with
(w, v) = 1. If now v1, . . . , vd−1 is a Z-basis of Λv we see that v1, . . . , vd−1, w
is a Z-basis of Zd and we may assume that det(v1, · · · , vd−1, w) = 1. Let gv ∈
SLd(Z) denote the matrix whose columns are v1, · · · , vd−1, w. Set ASLd−1 =
{

(

g ∗
0 1

)

| g ∈ SLd−1

}

. The set of possible choices for gv is the coset

gvASLd−1(Z). We define a grid in Rd−1 to be a unimodular lattice Λ in Rd−1

together with a marked point on the (d−1)-dimensional torus Rd−1/Λ. The
space ASLd−1(R)/ASLd−1(Z) is the moduli space of grids in Rd−1. Thus,
kvgvASLd−1(Z) represent the grid consisting of the rotated image of Λv to
Rd−1 together with the rotated image of w orthogonally projected into Rd−1,
and the well-defined double coset

[∆v]
def
= SOd−1(R)avkvgvASLd−1(Z)

represent this grid up-to rotations of the hyperplane Rd−1. Thus we obtain
the element [∆v] of the space

Yd−1
def
= SOd−1(R) \ ASLd−1(R)/ASLd−1(Z).

One should think about [∆v] as the shape of the orthogonal lattice Λv to-
gether with a point on the corresponding (d − 1)-dimensional torus which
marks the position of orthogonal projection of w to the hyperplane contain-
ing Λv.

Let ν̃D denote the normalized counting measure on the set
{(

v

‖v‖ , [∆v ]

)

: v ∈ Sd−1(D)

}

⊂ Sd−1 × Yd−1.

We are interested to find A ⊂ N for which

(1.2) ν̃D
weak∗−→ mSd−1 ⊗mYd−1

as D → ∞ with D ∈ A

where mSd−1 ⊗ mYd−1
is the product of the natural uniform measures on

Sd−1 and Yd−1. We propose the following conjecture as a generalization of
Linnik’s Problem on spheres:

Conjecture 1.1. The convergence in (1.2) holds for the subset A = N
if d > 4, holds for A = N \ (8N) if d = 4, and for the subset

A =
{

D ≥ 1 | D is not congruent to 0, 4, 7 modulo 8
}

if d = 3.
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By a theorem of Legendre the restriction to the proper subset of N as in
the above conjecture for d = 3 is equivalent to S2(D) being nonempty, and
hence necessary. A similar statement holds for d = 4.

In a separate paper [AES14] we obtain for the case d = 3 some partial re-
sults towards this conjecture. However, for d > 3 we can give much stronger
results using the techniques presented here. For an odd rational prime p let
D(p) = {D : p ∤ D}. The main result of this paper is the following:

Theorem 1.2. Conjecture 1.1 is true for d > 5. For d = 5 (resp. d = 4), the
convergence in (1.2) holds for the subset A = D(p) (resp. A = D(p) \ (8N))
where p is any fixed odd prime.

Theorem 1.2 will be proven using the theorem of Mozes and Shah [MS95]
concerning limits of algebraic measures with unipotent flows acting ergodi-
cally. More precisely we will need a p-adic analogue of this result, which has
been given more recently by Gorodnik and Oh [GO11]. In particular we note
that Theorem 1.2 should therefore be considered a corollary of the measure
classification theorems for unipotent flows on S-arithmetic quotients (see
[Ra95] and [MT94]).

As explained in Lemma 3.7, the congruence condition D ∈ D(p) is a
splitting condition which enables us to use the existing theory of unipo-
tent dynamics. It is possible to remove this splitting condition for d = 4, 5
by giving effective dynamical arguments in the spirit of [EMMV14] (see
also [EMV09]), but this result is not general enough for that purpose.
In [ERW14] René Rühr, Philipp Wirth, and the second named author use
the methods of [EMMV14] to remove the congruence condition for d = 4, 5
in Theorem 1.2. We note however, that the case d = 3 remains open (apart
from the partial results in [AES14] that concerns itself only with the problem
on S2 × X2 and involves some stronger congruence conditions).

Our interest in this problem arose through the work of W. Schmidt [Sch98],
J. Marklof [Mar10] (see also [EMSS]). However, as Peter Sarnak and Ruixi-
ang Zhang pointed out to us, Maass [Maa56] already asked similar questions
in 1956 (see also [Maa59]). More precisely, the above question is the common
refinement of Linnik’s problem and the question of Maass.

2. Notation and organization of the paper

A sequence of probability measures µn on a metric space X is said to
equidistribute to a probability measure µ if µn converge to µ in the weak∗

topology on the space of probability measures on X. A probability measure
µ is called a weak∗ limit of a sequence of measures µn if there exists a subse-
quence (nk) such that µnk

equidistribute to µ as k → ∞. For a probability
measure µ and a measurable set A of positive measure, the restriction µ|A
of µ to A is defined by µ|A(B) = 1

µ(A)µ(A ∩B) for any measurable set B.

Recall that a discrete subgroup Λ < L is called a lattice if L/Λ admits
an L-invariant probability measure. Given a locally compact group L and a



4 M. AKA, M. EINSIEDLER, AND U. SHAPIRA

subgroupM < L such that L/M admits an L-invariant probability measure,
it is unique, we denote it by µL/M , and call it the uniform measure or the
Haar measure on L/M . If furthermore, K < L is a compact subgroup then
there is a natural quotient map L/M → K\L/M , and the uniform measure
on K\L/M is by definition the push forward of the Haar measure on L/M .

We recall that the Haar measure on a finite volume orbit HgΓ is the push-
forward of the uniform measure on H/

(

H ∩ gΓg−1
)

. Note that a twisted

orbit of the form gHΓ can be thought of as an orbit for the subgroup gHg−1

since gHΓ = gHg−1gΓ.
For a finite set S of valuations on Q we set QS =

∏

v∈S Qv and ZS =

Z
[{

1
p : p ∈ S \ {∞}

}]

. For a prime number p, Zp denotes the ring of p-adic

integers (so with this notation Z{p} ∩Zp = Z). As usual we will embedd ZS

diagonally into QS, where q ∈ ZS is mapped to (q, . . . , q) ∈ QS. When
∞ ∈ S, the group ZS is a discrete and cocompact subgroup of QS.

For an algebraic group P we write PS
def
= P(QS). For a semisimple alge-

braic Q-group P we let πP : P̃ → P be the simply connected covering map
over Q, which is unique up-to Q-isomorphism (See [Pro07, Thereom 2.6]

for details). We denote by P+
S the image of P̃S under πP. We also recall

that P(ZS) is a lattice in P(QS) if ∞ ∈ S and P is semisimple and also
if P = ASLd−1. As we will see later the subgroup P+

S < PS plays an im-

portant role in some of the ergodic theorems on P(QS)/P(Z
S) that we will

use.
The letter e will always denote the identity element of a group, and we

will sometimes use subscripts to indicate the corresponding group, e.g. we
may write e∞ ∈ P(R), ep ∈ P(Qp), or ef ∈ P(

∏

p∈S\{∞}Qp).

This paper is organised as follows: The desired equidistribution (1.2)
follows from an equidistribution of ”joined” orbits on a product of S-adic
homogeneous spaces, which is proved in §3 using unipotent dynamics. The
translation between the result of §3 to (1.2) is stated in §4 and proved in §5.

3. Equidistribution of joined S-adic orbits

Fix some finite set S ∋ ∞ of valuations of Q. We define the algebraic
groups G1 = SOd,G2 = ASLd−1, G2 = SLd−1, G = G1 × G2, and G =

G1 × G2. Consider the homogeneous spaces YS def
= GS/G(ZS) and X S def

=
GS/G(ZS). We write πS : YS → X S for the map induced by the natural
projection ρSLd−1

: ASLd−1 → SLd−1. Finally, let YS
i = Gi,S/Gi(Z

S).

For v ∈ Zd
prim we set Hv

def
= StabG1(v) under the natural action. The

group Hv is defined over Z ⊂ Q as v ∈ Zd. Let us mention at this point that
we will prove Theorem 1.2 by studying the dynamics and the orbits of the
stabilizer Hv of v which in particular will allows us to conclude that there
are many primitive vectors in S(‖v‖2) if D = ‖v‖2 is sufficiently large.
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We set SOd−1(R) = StabG1(ed)(R) and note that k−1
v StabG1(ed)(R)kv =

k−1
v SOd−1(R)kv = Hv(R). Consider the diagonally embedded algebraic

group Lv defined by

(3.1) Lv(R)
def
=

{(

h, g−1
v hgv

)

: h ∈ Hv(R)
}

for any ring R. As gv ∈ SLd(Z), the group Lv is also defined over Z ⊂ Q.
We also define

Lv(R)
def
=

{(

h, ρSLd−1
(g−1

v hgv)
)

: h ∈ Hv(R)
}

.

For v ∈ Sd−1(D) let θv = avkvgv, θ̄v = ρSLd−1
(avkvgv) and consider the

orbits

(3.2) Ov,S
def
= (kv, ef , θv, ef )L

+
v,SG(ZS) ⊂ YS

and

Ov,S
def
= (kv, ef , θ̄v, ef )L

+
v,SG(ZS) ⊂ XS.

As Lv is Q-anisotropic (e.g. because Lv(R) is compact), the Borel Harish-
Chandra Theorem (see e.g. [Mar91, Theorem I.3.2.4]) implies that these are
compact orbits. Let µv,S (resp. µv,S) be the Haar measure on these orbits

and define µS
def
= µG+

S
/G+

S
∩G(ZS) and µS

def
= µ

G
+
S /G

+
S∩G(ZS)

.

Remark 3.1. We have πS
∗ (µv,S) = µv,S and πS

∗ (µS) = µS .

Theorem 3.2. Let p be a fixed odd prime and set S = {∞, p}. For d > 5
and for any sequence {vn} ⊂ Zd

prim with ‖vn‖ → ∞ as n → ∞ we have that
µvn converge in the weak∗ topology to µS.
The same conclusion holds for d = 4 or 5 when {vn} is a sequence of prim-

itive vectors with ‖vn‖ → ∞ as n → ∞ and ‖vn‖22 ∈ D(p) for any n ∈ N,
where p is a fixed odd prime number.

The proof of Theorem 3.2 is divided into three steps. In the first we prove
some preliminaries on quadratic forms and recall a theorem by Gorodnik
and Oh. In the second we will establish the analog of Theorem 3.2 for the
measures µv,S . In the last step, we will deduce the desired statement for the
measures µv,S .

3.1. Properties of the quadratic forms. Let Q0 denote the quadratic

form
∑d

i=1 x
2
i . Fix a vector v ∈ Sd−1(D) and a rational matrix γ ∈ SLd−1(Q).

Fix a choice of gv and consider the following quadratic map

φγ
v : Qd−1 → Q, u 7→ (Q0 ◦ gv ◦ γ)(u).

As before we identify Qd−1 with Qd−1 × {0} ⊂ Qd so that gv(γ(u)) ∈ Qd

is well-defined. We set φv
def
= φe

v. For a quadratic map φ let Bφ be the
associated bilinear form

Bφ(u1, u2) =
1

2
(φ(u1 + u2)− φ(u1)− φ(u2)) .
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Finally, the determinant of φ with respect to b1, · · · , bd−1 is detMφ where

Mφ = (Bφ(bi, bj))1≤i,j≤d−1. When b1, · · · , bd−1 is a basis for Zd−1 ⊂ Qd−1

and φ(bi) ∈ Z for all i, the determinant is a well-defined integer which does
not depend of the choice of the basis. This is the case for φv with the
standard basis and the choice of gv merely changes the basis, so does not
influence the value of the determinant.

Lemma 3.3. For any v ∈ Sd−1(D) we have det(φv) = D. Moreover, there
exist u1, u2 ∈ Zd−1 such that Bφv

(u1, u2) = 1.

Proof. Using Equation (1.1) we see that the determinant of Q0 with respect
v1, · · · , vd−1, v is D2. But MQ0 with respect this basis, is a block matrix
having a d − 1-block whose determinant is det(φv) and a 1-block whose
value is (v, v) = D. Thus the first assertion follows.

Let v1, · · · , vd−1, w be a basis chosen as in the introduction. Since d ≥ 3
we can assume without loss of generality that v1 is in v⊥∩w⊥. It is enough to
show the second assertion while considering the map φv with this choice of a
basis as the columns of the matrix gv . As v1 is primitive we can find u ∈ Zd

with (u, v1) = 1. As (w, v1) = 0 we can add to u multiples of w, so we can

assume (as v1, · · · , vd−1, w is a basis for Zd) that u =
∑d−1

i=1 aivi, ai ∈ Z. This

implies that
∑d−1

i=1 ai(vi, v1) = 1 showing Bφv
(e1, (a1, · · · , ad−1)) = 1. �

Define Hφ = SO(φ) < SLd−1 by {T ∈ SLd−1 : φ ◦ T = φ}. Recall that
ρSLd−1

: ASLd−1 → SLd−1 denotes the natural projection. Following the
definitions, we have that

(3.3) Hφγ
v
= γ−1Hφv

γ = γ−1ρSLd−1
(g−1

v Hvgv)γ.

Lemma 3.4. Let φ, φ′ : Qd−1 → Q be two quadratic maps and assume that
Hφ = Hφ′ as Q-algebraic subgroups of SLd−1. Then there exists r ∈ Q× such
that φ = rφ′.

Proof. It is enough to prove this statement over C. Thus, we can assume
that Mφ is the identity matrix. We need to show that Mφ′ is a scalar

matrix. Fix 1 ≤ i < j ≤ d − 1 and let M ij
φ be the 2 by 2 matrix whose

entries are the ii, ij, ji, jj entries of Mφ and similarly for M ij
φ′ . Acting on

matrices with A.M = AtMA, M ij
φ is preserved by SO2(C), and so is M ij

φ′

by our assumption. A direct calculation show that this implies that M ij
φ′ =

diag(r, r) for some r 6= 0. Applying this argument for all possible i 6= j
implies the claim. �

Proposition 3.5. If Hφγv
v

= Hφγu
u

for some v, u ∈ Zd
prim and some γv, γu ∈

SLd−1(Z
S), then ‖v‖2

‖u‖2 ∈ (ZS)×.

Proof. By Lemma 3.4 φγv
v = rφγu

u for some r ∈ Q. Using the standard basis
of Zd−1, it follows that γtvMφv

γu = r · γtuMφu
γu. By Lemma 3.3 there exist

w1, w2 ∈ Zd−1 with wt
1Mφu

w2 = 1. Since γv, γu ∈ SLd−1(Z
S) it follows
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that r ∈ ZS. Switching the roles of v and u we see that r−1 ∈ ZS and so
r ∈ (ZS)×. By Lemma 3.3, detMφv

= ‖v‖2 and similarly for u. Noting that

det γv = det γu = 1, we get ‖v‖2 = rd−1 ‖u‖2 and the claim follows. �

Lemma 3.6. If P is the orthogonal group of a definite quadratic form then
P+
{∞} = P(R).

Proof. See [Pro07, §5.1]. �

Lemma 3.7. Let v ∈ Sd−1(D) and recall that p 6= 2. Then the Lie algebra
of Hv (resp. ρSLd−1

(g−1
v Hvgv)) is a maximal semisimple Lie sub-algebra of

G1 (resp. G2). If d > 5 these groups are Qp-isotropic and the same holds
for d = 4 or 5 whenever D ∈ D(p).

Proof. Maximality goes back to a classification made in 1952 by Dynkin
[Dyn52] whose english translation may be found at [Dyn00]. As being
isotropic is preserved by conjugation by gv, it is enough to prove the second
statement for Hv. The group Hv is naturally the orthogonal group of the

d − 1 dimensional quadratic lattice Qv
def
= (Q,Λv), so it is enough to show

that Qv is isotropic. This follows from [Kit99, Theorem 3.5.1] using the
congruence condition D ∈ D(p) when d = 4 or 5. Indeed, for d − 1 ≥ 5,
Qv is automatically isotropic over Qp. We have seen in Lemma 3.3 that
Qv has discriminant D. Denote the Hasse invariant of Qv by S(Qv). Note
that for p 6= 2 the congruence condition p ∤ D implies that S(Qv) = 1 (use
[Kit99, Theorem 3.3.1(d)]). This, in turn, implies that Qv is isotropic (use
[Kit99, Theorem 3.5.1]). �

3.2. Limits of algebraic measures. Let G ⊂ SLk (for some integer k) be
a connected semisimple Q-group, S a finite set of valuations containing all
the valuations for which G(Qv) is compact, GS = G(QS) and Γ a finite-index

subgroup of G(ZS) = G(QS) ∩ SLk(Z
S). Let XS

def
= GS/Γ and let P(XS)

denote the space of probability measures on XS .
Mozes and Shah showed in [MS95] that limits of algebraic probability

measure are again algebraic if some unipotent flows act ergodically for each
of the measures in the sequence. We are going to use the following analogue
for S-arithmetic quotients obtained by Gorodnik and Oh, which we include
here in a slightly simplified version.

Theorem 3.8 ([GO11, Theorem 4.6]). Let Li be a sequence of connected
semisimple subgroups of G and assume that there exists p ∈ S such that for
any Li and any Qp-normal subgroup N < Li, N(Qp) is non-compact. Let gi

be a sequence of elements of GS and set νi
def
= µgiL

+
i,S

Γ. If the centralizers of

all Li are Q-anisotropic, then {ν1, ν2, . . .} is relatively compact in P(XS).
Assume that νi weakly converge to ν in P(XS), then the following statements
hold:

(1) There exists a Zariski connected algebraic group M defined over Q
such that ν = µgMΓ where M is a closed finite-index subgroup of MS
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and g ∈ GS. If the centralizers of all Li are Q-anisotropic, then M
is semi-simple.

(2) There exists a sequence γi ⊂ Γ such that for all i sufficiently large
we have γiLiγ

−1
i ⊂ M.

(3) There exists a sequence hi ∈ L+
i,S such that gihiγ

−1
i converges to g

as i → ∞.

3.3. Step I: Proof of Theorem 3.2 for orthogonal lattices. Let C =
{vn : n ∈ N} and S = {∞, p}. We apply Theorem 3.8 with Ln = Lvn and
gn = (kvn , ep, θ̄v, ep) ∈ GS . By Lemma 3.7 and the congruence assumption
in Theorem 3.2 when d = 4 or 5 the main assumption to Theorem 3.8 is
satisfied.

Let ν be a weak∗ limit of
(

µv,S

)

v∈C which is the limit of a subsequence
(

µv,S

)

v∈C1
for C1 ⊂ C. We wish to show that ν = µS . By Lemma 3.7 the

centralizer of Hv is finite hence Q-anisotropic so ν is a probability measure
by Theorem 3.8.

Applying Theorem 3.8.(1)–(2), we find a semisimple algebraic Q-group
M < G and C2 ⊂ C1 such that |C1 \ C2| < ∞ and for all v ∈ C2 we have

(3.4) γvLvγ
−1
v < M

for some γv ∈ G(ZS).
Assume, for a moment, that M = G. We will again use Theorem 3.8

to conclude the desired equidistribution. First we note that all the dy-

namics takes place in the orbit of G
+
S . Indeed, by Lemma 3.6 the element

gn = (kvn , e, θ̄v , e) belongs to G
+
S for any n ∈ N and L

+
vn,S ⊂ G

+
S . Using The-

orem 3.8.(1), we see that ν = µgM0G(ZS) for a subgroup M0 of finite-index

in GS and some g ∈ GS. By [BT73, §6.7] M+
S = G

+
S is a minimal finite-

index subgroup of GS and therefore contained in M0. Since ν is supported

inside G
+
SG(ZS), it follows that M0 = G

+
S and that ν = µ

G
+
SG(Z)

= µv,S .

Therefore, the proof of this step will be concluded once we show:

Claim. M = G.

Proof of the Claim . Let π1 : G1 ×G2 → G1 and π2 : G1 ×G2 → G2 denote

the natural projection and define Mi
def
= πi(M). Since M is semisimple and

G1 and G2 have non-isomorphic simple Lie factors, it is enough to show that
M1 = G1 and M2 = G2.

Case I:
(

‖v‖2
)

v∈C2

is not eventually supported on a geometric progression

of the form
(

D0p
k
)

k∈N. We begin with M1: we know that M1 contains

subgroups of the form γ−1
v Hvγv for any v ∈ C2 where γv ∈ G1(Z

S). By
Lemma 3.7, each γ−1

v Hvγv is a maximal semisimple subgroup. Thus, if
M1 6= G1 then for all v, u ∈ C2 we have γ

−1
v Hvγv = γ−1

u Huγu, which says that
Hγ−1

v v = Hγ−1
u u. This in turn implies γ−1

v v = αγ−1
u u for some α 6= 0. As v, u

are primitive vectors in Zd, γ−1
v v, γ−1

v u are primitive vectors in (ZS)d = Z[1p ]
d
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(considered as a ZS-module). Thus α ∈ (ZS)× = {±pn : n ∈ Z}. Noting

that for all v ∈ C2 we have
∥

∥γ−1
v v

∥

∥

2
= ‖v‖2, we obtain a contradiction

under the assumption of Case I.
Assume now that M2 6= G2. It follows from (3.4) and from (3.3) that M2

contains subgroups of the form Hφγv
v

for all v ∈ C2 where γv ∈ G2(Z
S). By

Lemma 3.7 Hφγ
v
is always maximal, so we have that Hφγu

u
= Hφγv

v
for all

v, u ∈ C2. It follows from Proposition 3.5, that the assumption of Case I is
not satisfied. This concludes the proof of Case I.

Note that this is the only relevant case when d = 4 or 5 (as in that case

we assume that p ∤ ‖v‖2 for all v ∈ C).

Case II:
(

‖v‖2
)

v∈C2

is eventually supported on a geometric progression

of the form
(

D0p
k
)

k∈N. Consider Rp,q
def
=

(

µv,{∞,p,q}
)

v∈C2

and Rq
def
=

(

µv,{∞,q}
)

v∈C2

for some odd prime q 6= p. For Rq we are again in Case

I, so by the above, Rq converges to µ{∞,q}. We consider the space X {∞,p,q}

with the natural projections

X {∞,p,q}

yyrr
rr
rr
rr
rr

%%
▲▲

▲▲
▲▲

▲▲
▲▲

X {∞,p} X {∞,q}

and apply Theorem 3.8 to Rp,q. For any converging subsequence R′
p,q ⊂ Rp,q

we obtain a subgroup M(R′
p,q) < G. As the push-forward of R′

p,q under the

natural projection X {∞,p,q} → X {∞,q} equidistribute to µ{∞,q} we have that

M(R′
p,q) = G. As above, this implies that Rp,q converges to µ{∞,p,q} and in

turn, that
(

µv,{∞,p}
)

v∈C2

equidistribute to µ{∞,p} (and in particular that

M = G) as we needed to show. �

3.4. Upgrading from orthogonal lattices to orthogonal grids. Let ν
be a weak∗ limit of (µv,S)v∈C which is the limit of a subsequence (µv,S)v∈C1

for C1 ⊂ C. We need to show that ν = µS . First notice that πS : YS → X S

has compact fibers, which together with Remark 3.1 and § 3.3 gives that
πS
∗ ν = µS . In particular, ν is also a probability measure.
We will use the same type of argument as in §3.3: assuming that ν 6= µS

we will use the algebraic information furnished by Theorem 3.8 to deduce a
contradiction to the fact that the primitive vectors in C1 have their length

going to infinity. As before, we may assume that
(

‖v‖2
)

v∈C1

are not even-

tually varying along a geometric progression of the type (D0p
n)n∈N. In fact,

if this is not the case, a similar argument as in Case II above can be applied,
and we will not repeat it.
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More precisely, we will apply Theorem 3.8 within the quotient

(G1 × SLd)S / (G1 × SLd) (Z
S).

To simplify the notation we set G′ = G1 × SLd and recall that

G = G1 ×G2 = SOd ×ASLd−1 < G′.

We note that the orbit GSG
′(ZS) is isomorphic to (and will be identified

with) YS = GS/G(ZS). Recall that this implies that the finite volume
orbit GSG

′(ZS) is a closed subset of G′
S/G

′(ZS), equivalently a closed subset
of G′

S or even of the homogeneous space W = GS\G′
S .

From Theorem 3.8.(1)–(2) we find an algebraic Q-subgroup M < G′ and
C2 ⊂ C1 such that |C1 \ C2| < ∞ and for all v ∈ C2

(3.5) γvLvγ
−1
v < M

for some γv ∈ G1 × SLd(Z
S). Moreover, ν = µgM0G1×SLd(ZS ) for some finite-

index subgroup M0 < MS and g ∈ G′
S . By construction all orbits in our

sequence are contained in GSG
′(ZS), which implies that the support of ν is

also contained in this set and in particular that gG′(ZS) ∈ GSG
′(ZS). This

implies that we may change M by a conjugate γMγ−1 for some γ ∈ G′(ZS)
and assume that g ∈ GS .

If m ∈ M0, we obtain that the element gmG′(ZS) belongs to the sup-
port of ν. Therefore, GSm ∈ W belongs to the closed (and discrete)
set GSG

′(ZS). If m ∈ MS is sufficiently close to the identity this im-
plies m ∈ GS. As M is Zariski connected we conclude that M < G. Using
the same argument it also follows from Theorem 3.8.(3) that (γv)v∈C3

⊂ G
for some subset C3 ⊂ C2 with |C2 \ C3| < ∞.

By the previous step we know that πS
∗ ν = µS, which implies that either

M = G or M = G1×M2 where M2 is a Q-subgroup which is Q-isomorphic to
a fixed copy of SLd−1. Such subgroups are of the form SLq

d−1 where SLq
d−1

is the conjugation of ι(SLd−1) =

(

SLd−1 0
0 1

)

by cq =

(

Id−1 q
0 1

)

for

some fixed q ∈ Qd−1. As above, we will be done once we show that M = G.
Assume therefore that we are in the second case and M2 = SLq

d−1. Using
the definition of Lv in (3.1) and projecting (3.5) using the canonical map
G → G2, we get that for all v ∈ C3 that

c−1
q γ−1

v,2g
−1
v Hvgvγv,2cq ⊂ ι(SLd−1),

where γv,2 genotes the projection of γv to G2. Let N ∈ N be such that

Nq ∈ Zd−1 and set u
def
= gvγvcq(Ned). Note that Ned is a simultaneous

eigenvector of the right hand side. It follows that for each v ∈ C3, we have
that u ∈ (ZS)d and that u is a simultaneous eigenvector for Hv. Therefore
u = αvv for some αv ∈ ZS \ {0}. Using that γv ∈ G2, and the definition of

gv, we see that u = Nw +
∑d−1

i=1 aivi with ai ∈ ZS. Recall that (w, v) = 1.
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Taking the inner product of u with v we get

αv ‖v‖2 = (u, v) = (Nw, v) = N

for all v ∈ C3. This gives a contradiction under the assumption that
(

‖v‖2
)

v∈C1

is not eventually varying along a geometric progression of the

type (D0p
n)n∈N.

4. An equivalence relation

Let Gi = Gi(R),Γi = Gi(Z) for i = 1, 2, K = Hed(R) and fix v ∈ Sd−1(D)
throughout this section. We identify K \ G1

∼= Sd−1 via the action of G1

on Sd−1 defined by w 7→ k−1w using the initial point ed. We will also
write w.k = k−1w for this right action of k ∈ G1 on w ∈ Sd−1(R). Recall

that this action is transitive with K
def
= SOd−1(R) = StabG(ed). As in the

introduction, the group K can also be embedded into G2. We denote the

diagonal embedding of K by ΘK
def
= {(k, k) : k ∈ K} ⊂ G1 ×G2.

Let Sd−1 = Sd−1/Γ1 and Sd−1(D) = Sd−1(D)/Γ1. Set v = v.Γ1 and
[∆v] = [∆v]. The latter is well-defined as [∆γv] = [∆v] for all γ ∈ Γ1. Note

also that the projection v ∈ Sd−1(D) 7→ v

‖v‖ ∈ Sd−1 is well-defined. It

follows that the following double coset

(4.1) K ×K (kv , θv) Γ1 × Γ2

represents the pair
(

v

‖v‖ , [∆v]

)

∈ Sd−1 × Yd−1.

Note that all the measures appearing in equation (1.2) are Γ1-invariant so
if we consider their projection νD of ν̃D to Sd−1 × Yd−1 we have that the
convergence (1.2) is equivalent to

(4.2) νD
weak∗−→ m

S
d−1 ⊗mYd−1

as D → ∞ with D ∈ A

4.1. Definition of Pv and the measure νv. From now on we will use only
one odd prime p so we fix S = {∞, p} and then QS = R×Qp and ZS = Z[1p ].

Fix v ∈ Sd−1(D). We say w ∼ v for w ∈ Zd if there exist gp ∈ G1(Zp) and
γp ∈ G1(Z[

1
p ]) such that gpw = v, γpw = v and gpγ

−1
p ∈ H+

v,{p}.

Lemma 4.1. The relation ∼ is an equivalence relation.

Proof. The key fact we will use is that for any v ∈ Zd
prim, H

+
v,{p} is a minimal

finite index subgroup of Hv,{p} (see [BT73, §6.7]). Reflexivity is immediate.
For symmetry, assume w ∼ v with gp, γp as above. Taking the inverse

we have γpg
−1
p ∈ H+

v,{p}. It follows from g−1
p Hvgp = Hw and the key fact

above that g−1
p H+

v,{p}gp = H+
w,{p} showing that g−1

p γp ∈ H+
w,{p} establishing

symmetry. For transitivity, let v ∈ Sd−1(D) be given and let w1, w2 be two
vectors satisfying v ∼ wi. We will show that w2 ∼ w1. Let γi ∈ G1(Z[

1
p ]), gi ∈



12 M. AKA, M. EINSIEDLER, AND U. SHAPIRA

G1(Zp), be the elements arising from the definition of v ∼ wi. Then, w2 =

γ−1
1 γ2w1 = g−1

1 g2w1. Transitivity follows as

g−1
2 g1(γ

−1
2 γ1)

−1 = g−1
2

(

g1γ
−1
1 γ2g

−1
2

)

g2 ∈ g−1
2 H+

v,{p}g2 = H+
w2,{p}

where the latter equality again follows from the key fact. �

The equivalence relation ∼ satisfies that if w ∼ v and γ ∈ Γ1 then γw ∼
γv, and so it descends to an equivalence relation on Sd−1(D). We set Pv

def
=

{w : w ∼ v} and Rv =
{(

w

‖w‖ , [∆w]
)

: w ∈ Pv

}

. We finally define νv =

νD|Rv . In the next section we will relate νv to the measure µv,S .

5. Deducing Theorem 1.2 from Theorem 3.2.

5.1. Restriction to the principal genus. Consider the open orbit U ′ def=
G(R × Zp)G(Z[1p ]) ⊂ YS. The set U ′ is also closed by [PR94, Theorem

5.1]. By [PR94, §8.2] G+
S < GS is a clopen finite-index subgroup. Finally,

we consider the clopen set U = U ′ ∩
(

G+
SG(Z[1p ])

)

. Thus, with vn as in

Theorem 3.2, we have that

(5.1) ηvn
def
= µvn,S|U

weak∗−→ η
def
= µ|U as n → ∞

We have a projection map π from U ′, considered as a subset of YS , to
Y∞ = G(R)/G(Z) obtained by dividing from the left by {e}×G(Zp). Noting
that G+

{∞} = G(R) (this follows from Lemma 3.6 and the fact that SLd−1

is simply-connected), it follows that π∗ (η) is a probability measure which
is invariant under G(R), that is, it is the uniform probability measure on
G(R)/G(Z). Therefore, under the assumptions of Theorem 3.2 we have

(5.2) π∗ (ηvn)
weak∗−→ mG(R)/G(Z).

In addition, we have the projection map:

(5.3) ρ : G1 ×G2/Γ1 × Γ2 → K ×K \G1 ×G2/Γ1 × Γ2

Below we will show that the measures (ρ ◦ π)∗ ηv and νQv are closely related.

5.2. Description of ηv as union of orbits. Fix v ∈ Sd−1(D) and note

that Hv(Zp) = Hv(Qp) ∩ G1(Zp). Let π1 : YS → YS
1

def
= G1,S/G1(Z

S) be

the natural projection. For h ∈ H+
v,{p} the double coset Hv(Zp)hHv(Z[

1
p ])

is either contained in π1(U), in which case we set s(h) = 0, or it is dis-
joint from π1(U), in which case we set s(h) = other. We will not need
this, but wish to note that the symbol 0 corresponds here to our quadratic
form Q0(x1, . . . , xd) = x21+ · · ·+x2d and ‘other’ for the other quadratic forms
in the spin genus of Q0. For s ∈ {0, other} choose a set Ms satisfying the
following equality (as subsets of Hv(Qp)):

⋃

h∈H+
v,{p}

,s(h)=s

Hv(Zp)hHv(Z[
1
p ]) =

⊔

h∈Ms

Hv(Zp)hHv(Z[
1
p ])
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where the later denotes a disjoint union. The sets M0,Mother,Mfull
def
= M0∪

Mother are finite by [PR94, Theorem 5.1]. Using that H+
v,{p} ⊂ G+

1,{p} and

the definition of U we have
{

h ∈ H+
v,{p} : s(h) = 0

}

= H+
v,{p} ∩G1(Zp)G1(Z[

1
p ]).

By Lemma 3.6, L+
v,{∞} = Lv(R). Recall θv = avkvgv and note that

(kv, θv)Lv(R) = ΘK (kv, θv). Using this we can express the orbit Ov,S

from (3.2) in a different form: set l(h) = g−1
v hgv and let us allow to re-

order entries of products as needed so that

(5.4) ΘK × L+
v,{p} =

{

(k, h, k, l(h)) : k ∈ K,h ∈ H+
v,{p}

}

⊂ GS .

In this notation we get

Ov,S = ΘK × L+
v,{p}(kv, ep, θv, ep)G(Z[1p ]).

We also set L+(Zp) = L+
v,{p} ∩G(Zp) and obtain

Ov =
⊔

h∈Mfull

ΘK × L+(Zp)(kv , h, θv , l(h))G(Z[1p ]),

where we used the same identification as in (5.4). Thus, the restricted
measure ηv (see (5.1)) is a ΘK × L+(Zp)-invariant probability measure on

(5.5) Ov ∩ U =
⊔

h∈M0

ΘK × L+(Zp)(kv , h, θv, l(h))G(Z[1p ]).

We note that the last equality could also have been used as the definition of
the finite set M0 ⊂ H+

v,{p} of representatives.

5.3. The support of the measure π∗(ηv). By definition each h ∈ M0

belongs to G1(Zp)G1(Z[
1
p ]). So we can write h = c1(h)γ1(h)

−1 where c1(h) ∈
G1(Zp) and γ1(h) ∈ G1(Z[

1
p ]). Using the fact that G2 has class number 1, we

can write l(h) = c2(h)γ2(h)
−1 where c2(h) ∈ G2(Zp) and γ2(h) ∈ G2(Z[

1
p ]).

Proposition 5.1. The measure π∗(ηv) is a ΘK-invariant probability mea-
sure on

(5.6)
⊔

h∈M0

Oh
def
=

⊔

h∈M0

ΘK(kvγ1(h), avkvgvγ2(h))Γ.

Proof. The proposition follows immediately by plugging the decompositions
h = c1(h)γ1(h)

−1 and l(h) = c2(h)γ2(h)
−1 into (5.5) while recalling two

facts. The first is that the map π is dividing by {e} ×G(Zp) from the left.
The second fact is that (γ1(h), γ1(h), γ2(h), γ2(h)) ∈ G(Z[1p ]). �

Let us note that ΘK(kvγ1(h), avkvgvγ2(h))Γ does not depend on the choice
of the representative of the double coset H+

v,{p}(Zp)hH(Z[1p ]) and also not

on the choice of the above decompositions. In fact, let us first assume
that h = c1γ

−1
1 = c′1(γ

′
1)

−1 are two decompositions as above. This gives that
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c−1
1 c′1 = γ−1

1 γ′1 belongs to G1(Zp) ∩ G1(Z[
1
p ]) = G1(Z) = Γ1, which implies

the first half of the claimed independence in the G1-factor. If now h = c1γ
−1
1

as above, gp ∈ Hv(Zp), and β ∈ Hv(Z[
1
p ]), then gphβ = (gpc1)(γ

−1
1 β) and

we associate to this point the double coset Kkvβ
−1γ1Γ1. Using kvβ

−1k−1
v ∈

K the latter equals Kkvγ1Γ1, which is the claimed independence for the
components in G1. The proof for the component in G2 is similar.

We will now relate the set appearing in the above proposition with the
set Pv introduced in §4.1.

Proposition 5.2. For h ∈ M0 set ϕ(h) = Kkvγ1(h)Γ1. Then ϕ is a
bijection from M0 to {KkuΓ1 : u ∈ Pv}. Noting that ϕ(h) corresponds to
u = γ1(h)

−1v we further claim that Kavkvgvγ2(h)Γ2 = [∆u].

Proof. Fix h ∈ M0 and recall that h stabilizes v. We first need to show that
u = γ1(h)

−1v ∈ Zd−1: indeed, we have

Z[1p ]
d ∋ γ1(h)

−1v = c1(h)
−1hv = c1(h)

−1v ∈ Zd
p

so u ∈ Zd as Z[1p ] ∩ Zp = Z. Now, the elements c1(h), γ1(h) satisfy

c1(h)u = c1(h)γ1(h)
−1v = hv = v and γ1(h)u = v.

As c1(h)γ1(h)
−1 = h ∈ H+

v,{p} this shows that u ∼ v and thereforeKkvγ1(h)Γ1

belongs to {KkuΓ1 : u ∈ Pv}.
To see that ϕ is onto, fix u ∼ v and let hu = gpγ

−1
p ∈ H+

v,{p} arising from

the definition of ∼ in §4.1. Then γpu = v and s(hu) = 0. Let h̄ ∈ M0 be
such that Hv(Zp)huHv(Z[

1
p ]) = Hv(Zp)h̄Hv(Z[

1
p ]). We have explained above

that KkuΓ1 = KkvγpΓ1 = Kkvγ1(h̄)Γ1.
For injectivity, let h1, h2 ∈ M0 and set αi = γ1(hi), ki = c1(hi), i = 1, 2.

Assuming ϕ(h1) = ϕ(h2), there exist a γ ∈ Γ1 such that Kkvα1γ = Kkvα2.
Thus α1γα

−1
2 stabilize v so α1γα

−1
2 ∈ Hv(R) ∩ G(Z[1p ]) = Hv(Z[

1
p ]). Also

(k2γ
−1k−1

1 )v = (h2α2γ
−1α−1

1 h−1
1 )v = v so k2γ

−1k−1
1 ∈ Hv(Qp) ∩ G(Zp) =

Hv(Zp). As (k2γ
−1k−1

1 )h1(α1γα
−1
2 ) = h2 we see that

Hv(Zp)h1Hv(Z[
1
p ]) = Hv(Zp)h2Hv(Z[

1
p ]).

For the second assertion, fix h ∈ M0 and let u = γ1(h)
−1v. We will use the

abbreviations γi = γi(h), ci = ci(h) for i = 1, 2 which satisfy by definition
that h = c1γ

−1
1 and l(h) = g−1

v hgv = c2γ
−1
2 . We need to show that

(5.7) Kavkvgvγ2Γ2
?
= [∆u] = KaukuguΓ2.

Note first that av = au and that kvγ1 is a legitimate choice of ku. With these
choices (and using the identity of K on both sides), (5.7) will follow once we
show g−1

u γ−1
1 gvγ2 ∈ Γ2. The element g−1

u γ−1
1 gvγ2 is certainly a determinant

1 element which map Rd−1 to itself. Furthermore, the last entry of its last
column is positive by the orientation requirement in the definition of gv and
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gu. Therefore, it will be enough to show that this element maps Zd to itself.
We use again that Z[1p ] ∩ Zp = Z to obtain

Z[1p ]
d ⊃ g−1

u γ−1
1 gvγ2Z

d = g−1
u c−1

1

(

c1γ
−1
1

)

gv
(

γ2c
−1
2

)

c2Z
d =

= g−1
u c−1

1 hgvg
−1
v h−1gvc2Z

d = g−1
u c−1

1 gvc2Z
d ⊂ Zd

p.

�

5.4. Weights of (ρ ◦ π)∗ ηv and νv. Fix a sequence (vn) of vectors satisfy-

ing the conditions of Theorem 3.2 and set µn
def
= (ρ ◦ π)∗ ηvn (with π as in

(5.2) and ρ as in (5.3)) and νn
def
= νvn . It follows from Propositions 5.1–5.2

that Rvn = Supp(νn) = Supp(µn). Let λn denote the normalised counting
measure on Rvn . In this section we show

(5.8) µn − λn
n→∞−→ 0 and νn − λn

n→∞−→ 0,

That is, the measures µn and νn are equal to λn up-to a negligible error. For
u ∈ Sd−1 let S(u) = |StabΓ1(u)| for some u ∈ u and E = Ẽ × Yd−1 where

Ẽ
def
=

{

u ∈ Sd−1 : for u ∈ u, S(u) > 1
}

⊂ Sd−1.

The convergences in (5.8) follow from the following two lemmata:

Lemma 5.3. Fix n ∈ N and let v = vn. Set Mn = maxx∈Rv µn(x) and
Nn = maxx∈Rv νn(x) and a = |Γ1|. For every x ∈ Rv,

Mn

a ≤ µn(x) ≤ Mn

and Nn

a ≤ νn(x) ≤ Nn. Furthermore, equality holds in the right hand side
of both inequalities when x ∈ Rv \E.

Lemma 5.4. We have that

(5.9) |Rvn ∩ E|/|Rvn |
n→∞−→ 0.

Proof of Lemma 5.3. Let x(u) =
(

u

‖u‖ , [∆u]
)

and S(x(u))
def
= S( u

‖u‖). By

the definition of νn, we have for x(u) ∈ Rvn that νn(x(u)) =
|Γ1|

|Rvn |S(x(u)) . So

the lemma follows for νn. For µn first note that, using (5.5) we have

µn(x(u)) = ηvn(ΘK × L+(Zp)(kv , h, θv , l(h))G(Z[1p ]))

where h = h(x(u)) is the unique (by Prop. 5.2) element corresponding to
x(u) in M0. Therefore, we will be done once we show that the stabilizer of
the above orbit, namely,

(5.10)
∣

∣

∣

(

ΘK × L+(Zp)
)

∩ αhG(Z[1p ]))α
−1
h

∣

∣

∣

is bounded by S(x(u)), where αh
def
= (kv , h, θv , l(h)). To this end, notice that

as ΘK ×L+(Zp) embeds diagonally into the product G1×G2, the third and
the fourth coordinate of an element in this stabilizer are determined by the
first and the second. As we are only interested in getting an upper bound it
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is enough to consider the stabilizer in G1. Using that Kkv = kvHv(R) and

H+(Zp)
def
= H+

v,{p} ∩G1(Zp) ⊂ G1(Zp) it is enough to bound
∣

∣

∣
(Hv(R)×G1(Zp)) ∩ (e, h)G1(Z[

1
p ])(e, h

−1)
∣

∣

∣
.

Using the decomposition h = cγ
def
= c(h)γ(h)−1 and that c ∈ G1(Zp) the

latter is bounded by

(5.11)
∣

∣

∣
(Hv(R)× γG1(Zp)γ

−1) ∩G1(Z[
1
p ])

∣

∣

∣
.

As γ ∈ G1(Z[
1
p ]) we have γG1(Zp)γ

−1 ∩G1(Z[
1
p ]) = γG1(Z)γ

−1. Therefore
∣

∣Hv(R) ∩ γG1(Z)γ
−1

∣

∣ =
∣

∣γ−1Hv(R)γ ∩G1(Z)
∣

∣ = S(x(u))

bounds (5.11). �

Proof of Lemma 5.4 . We have that µn(E) = µn(Ẽ ×Yd−1)
n→∞−→ 0 since by

(5.2) we have lim supn→∞ (π1)∗ µn(Ẽ) ≤ mSd−1(Ẽ) = 0. Here π1 : Sd−1 ×
Yd−1 → Sd−1 is the projection map. Using Lemma 5.3 we have

(5.12) µn(E) =
µn(E ∩Rvn)

µn(Rvn)
≥

Mn

a |E ∩Rvn |
Mn|Rvn |

≥ 1

a

|E ∩Rvn |
|Rvn |

which gives (5.9).
�

This shows (5.8) and thus that

(5.13) lim
n→∞

νn = lim
n→∞

µn = mSd−1 ⊗mYd−1
.

5.5. Concluding the proof of Theorem 1.2. We have to show that the
convergence in (4.2) holds. In fact, we have proven a stronger statement.
The support of νD can be written as a disjoint union of equivalence classes
of the form Rv for some v ∈ Sd−1(D). The convergence in (5.13) shows that
each sequence of the form (νv) for any choice of varying vectors v (under

the congruence condition ‖v‖2 ∈ D(p) when d = 4 or 5), equidistribute to
m

S
d−1 ⊗mYd−1

. This implies Theorem 1.2.
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