
STABLE LATTICES AND THE DIAGONAL GROUP

URI SHAPIRA AND BARAK WEISS

Abstract. Inspired by work of McMullen, we show that any or-
bit of the diagonal group in the space of lattices accumulates on
the set of stable lattices. As consequences, we settle a conjecture
of Ramharter concerning the asymptotic behavior of the Mordell
constant, and reduce Minkowski’s conjecture on products of lin-
ear forms to a geometric question, yielding two new proofs of the
conjecture in dimensions up to 7.

1. Introduction

Let n ≥ 2 be an integer, let G
def
= SLn(R), Γ

def
= SLn(Z), let A ⊂ G

be the subgroup of positive diagonal matrices and let Ln
def
= G/Γ be

the space of unimodular lattices in Rn. The purpose of this paper is
to present a dynamical result regarding the action of A on Ln, and to
present some consequences in the geometry of numbers.

A lattice x ∈ Ln is called stable if for any subgroup Λ ⊂ x, the
covolume of Λ in span(Λ) is at least 1. In particular the length of the
shortest nonzero vector in x is at least 1. Stable lattices have also been
called ‘semistable’, they were introduced in a broad algebro-geometric
context by Harder, Narasimhan and Stuhler [13], [8], and were used
to develop a reduction theory for the study of the topology of locally
symmetric spaces. See Grayson [5] for a clear exposition.

Theorem 1.1. For any x ∈ Ln, the orbit-closure Ax contains a stable
lattice.

Theorem 1.1 is inspired by a breakthrough result of McMullen [9].
Recall that a lattice in Ln is called well-rounded if its shortest nonzero
vectors span Rn. In connection with his work on Minkowski’s conjec-
ture, McMullen showed that the closure of any bounded A-orbit in Ln
contains a well-rounded lattice. The set of well-rounded lattices neither
contains, nor is contained in, the set of stable lattices; while the set
of well-rounded lattices has no interior, the set of stable lattices does,
and in fact it occupies all but an exponentially small volume of Ln for
large n. Our proof of Theorem 1.1 closely follows McMullen’s. Note
however that we do not assume that Ax is bounded.
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We apply Theorem 1.1 to two problems in the geometry of numbers.
Let x ∈ Ln be a unimodular lattice. By a symmetric box in Rn we
mean a set of the form [−a1, a1] × · · · × [−an, an], and we say that a
symmetric box is admissible for x if it contains no nonzero points of x
in its interior. The Mordell constant of x is defined to be

κ(x)
def
=

1

2n
sup
B

Vol(B), (1.1)

where the supremum is taken over admissible symmetric boxes B, and
where Vol(B) denotes the volume of B. We also write

κn
def
= inf{κ(x) : x ∈ Ln}. (1.2)

The infimum in this definition is in fact a minimum, and, as with many
problems in the geometry of numbers it is of interest to compute the
constants κn and identify the lattices realizing the minimum. However
this appears to be a very difficult problem, which so far has only been
solved for n = 2, 3, the latter in a difficult paper of Ramharter [11]. It
is also of interest to provide bounds on the asymptotics of κn, and in

[10], Ramharter conjectured that lim supn→∞ κ
1/n logn
n > 0. As a simple

corollary of Theorem 1.1, we validate Ramharter’s conjecture, with an
explicit bound:

Corollary 1.2. For all n ≥ 2,

κn ≥ n−n/2. (1.3)

In particular

κ1/n logn
n ≥ n−1/2 logn −→n→∞

1√
e
.

We remark that Corollary 1.2 could also be derived from McMullen’s
results and a theorem of Birch and Swinnerton-Dyer. We refer the
reader to [15] for more information on the possible values of κ(x), x ∈
Ln, and to the preprint [14, §4] for slight improvements.

Our second application concerns Minkowski’s conjecture1, which posits
that for any unimodular lattice x, one has

sup
u∈Rn

inf
v∈x
|N(u− v)| ≤ 1

2n
, (1.4)

where N(u1, . . . , ud)
def
=
∏

j uj. Minkowski solved the question for n =

2 and several authors resolved the cases n ≤ 5. In [9], McMullen
settled the case n = 6. In fact, using his theorem on the A-action
on Ln, McMullen showed that in arbitrary dimension n, Minkowski’s

1It is not clear to us whether Minkowski actually made this conjecture.
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conjecture is implied by the statement that any well-rounded lattice
x ⊂ Rd with d ≤ n satisfies

covrad(x) ≤
√
d

2
, (1.5)

where covrad(x)
def
= maxu∈Rd minv∈x ‖u − v‖ and ‖ · ‖ is the Euclidean

norm on Rd. At the time of writing [9], (1.5) was known to hold for well-
rounded lattices in dimension at most 6, and in recent work of Hans-
Gill, Raka, Sehmi and Leetika [6, 7, 12], (1.5) has been proved for well-
rounded lattices in dimensions n = 7, 8, 9, thus settling Minkowski’s
question in those cases.

Our work gives two new approaches to Minkowski’s conjecture, and
each of these approaches yields a new proof of the conjecture in di-
mensions n ≤ 7. A direct application of Theorem 1.1 (see Corollary
5.1) shows that it follows in dimension n, from the assertion that for
any stable x ∈ Ln, (1.5) holds. Note that we do not require (1.5) in
dimensions less than n. Using the strategy of Woods and Hans-Gill
et al, in Theorem 5.8 we define a compact subset KZS ⊂ Rn and a
collection of 2n−1 subsets {W(I)} of Rn. We show that the assertion
KZS ⊂

⋃
IW(I) implies Minkowski’s conjecture in dimension n. This

provides a computational approach to Minkowski’s conjecture.
Secondly, an induction using the naturality of stable lattices, leads

to the following sufficient condition:

Corollary 1.3. Suppose that for some dimension n, for all d ≤ n, any
stable lattice x ∈ Ld which is a local maximum of the function covrad,
satisfies (1.5). Then (1.4) holds for any x ∈ Ln.

The local maxima of the function covrad have been studied in depth
in recent work of Dutour-Sikirić, Schürmann and Vallentin [3], who
characterized them and showed that there are finitely many in each
dimension. Dutour-Sikirić has formulated a Conjecture as to which of
these have the largest covering radius (see Conjecture 5.9), and has
verified his conjecture computationally in dimensions n ≤ 7. Our re-
sults imply that Minkowski’s conjecture is a consequence of Conjecture
5.9.

1.1. Acknowledgements. Our work was inspired by Curt McMullen’s
breakthrough paper [9] and many of our arguments are adaptations of
arguments appearing in [9]. We are also grateful to Curt McMullen
for additional insightful remarks, and in particular for the suggestion
to study the set of stable lattices in connection with the A-action on
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2. Orbit closures and stable lattices

Given a lattice x ∈ Ln and a subgroup Λ ⊂ x, we denote by r(Λ) the
rank of Λ and by |Λ| the covolume of Λ in the linear subspace span(Λ).
Let

V(x)
def
=
{
|Λ|

1
r(Λ) : Λ ⊂ x

}
,

α(x)
def
= minV(x). (2.1)

Since we may take Λ = x we have α(x) ≤ 1 for all x ∈ Ln, and x is
stable precisely if α(x) = 1. Observe that V(x) is a countable discrete
subset of the positive reals, and hence the minimum in (2.1) is attained.
Also note that the function α is a variant of the ‘length of the shortest
vector’; it is continuous and the sets {x : α(x) ≥ ε} are an exhaustion
of Ln by compact sets.

We begin by explaining the strategy for proving Theorem 1.1, which
is identical to the one used by McMullen. For a lattice x ∈ X and
ε > 0 we define an open cover Ux,ε = {Ux,ε

k }
n
k=1 of the diagonal group

A, where if a ∈ Ux,ε
k then α(ax) is ‘almost attained’ by a subgroup of

rank k. In particular, if a ∈ Ux,ε
n then ax is ‘almost stable’. The main

point is to show that for any ε > 0, Ux,ε
n 6= ∅; for then, taking εj → 0

and aj ∈ A such that aj ∈ U
x,εj
n , we find (passing to a subsequence)

that ajx converges to a stable lattice.
In order to establish that Ux,ε

n 6= ∅, we apply a topological result of
McMullen (Theorem 3.3) regarding open covers which is reminiscent
of the classical result of Lebesgue that asserts that in an open cover
of Euclidean n-space by bounded balls there must be a point which
is covered n + 1 times. We will work to show that the cover Ux,ε
satisfies the assumptions of Theorem 3.3. We will be able to verify
these assumptions when the orbit Ax is bounded. In §2.1 we reduce
the proof of Theorem 1.1 to this case.
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2.1. Reduction to bounded orbits. Using a result of Birch and
Swinnerton-Dyer, we will now show that it suffices to prove Theo-
rem 1.1 under the assumption that the orbit Ax ⊂ Ln is bounded;
that is, that Ax is compact. In this subsection we will denote A,G by
An, Gn as various dimensions will appear.

For a matrix g ∈ Gn we denote by [g] ∈ Ln the corresponding lattice.
If

g =


g1 ∗ . . . ∗
0 g2 . . .

...
...

. . . ∗
0 . . . 0 gk

 (2.2)

where gi ∈ Gni
for each i, then we say that g is in upper triangular

block form and refer to the gi’s as the diagonal blocks. Note that in
this definition, we insist that each gi is of determinant one.

Lemma 2.1. Let x = [g] ∈ Ln where g is in upper triangular block
form as in (2.2) and for each 1 ≤ i ≤ k, [gi] is a stable lattice in Lni

.
Then x is stable.

Proof. By induction, in proving the Lemma we may assume that k =
2. Let us denote the standard basis of Rn by e1, . . . , en, let us write

n = n1 + n2, V1
def
= span {e1, . . . , en1}, V2

def
= span {en1+1 . . . , en}, and

let π : Rn → V2 be the natural projection. By construction we have
x ∩ V1 = [g1], π(x) = [g2].

Let Λ ⊂ x be a subgroup, write Λ1
def
= Λ ∩ V1 and choose a direct

complement Λ2 ⊂ Λ, that is

Λ = Λ1 + Λ2, Λ1 ∩ Λ2 = {0}.
We claim that

|Λ| = |Λ1| · |π(Λ2)| . (2.3)

To see this we recall that one may compute |Λ| via the Gram-Schmidt
process. Namely, one begins with a set of generators vj of Λ and
successively defines u1 = v1 and uj is the orthogonal projection of vj
on span(v1, . . . , vj−1)⊥. In these terms, |Λ| =

∏
j ‖uj‖. Since π is an

orthogonal projection and Λ ∩ V1 is in ker π, (2.3) is clear from the
above description.

The discrete subgroup Λ1, when viewed as a subgroup of [g1] ∈ Ln1

satisfies |Λ1| ≥ 1 because [g1] is assumed to be stable. Similarly
π(Λ2) ⊂ [g2] ∈ Ln2 satisfies |π(Λ2)| ≥ 1, hence |Λ| ≥ 1. �

Lemma 2.2. Let x ∈ Ln and assume that Ax contains a lattice [g]
with g of upper triangular block form as in (2.2). For each 1 ≤ i ≤ k,
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suppose [hi] ∈ Ani
[gi] ⊂ Lni

. Then there exists a lattice [h] ∈ Ax such
that h has the form (2.2) with hi as its diagonal blocks.

Proof. Let Ω be the set of all lattices [g] of a fixed triangular form as
in (2.2). Then Ω is a closed subset of Ln and there is a projection

τ : Ω→ Ln1 × · · · × Lnk
, τ([g]) = ([g1] , . . . , [gk]).

The map τ has a compact fiber and is equivariant with respect to the

action of Ã
def
= An1 × · · · × Ank

. By assumption, there is a sequence

ãj =
(
a

(j)
1 , . . . , a

(j)
k

)
, a

(j)
i ∈ Ani

in Ã such that a
(j)
i [gi] → [hi], then

after passing to a subsequence, ãj[g] → [h] where h has the required

properties. Since Ax ⊃ Ã[g], the claim follows. �

Lemma 2.3. Let x ∈ Ln. Then there is [g] ∈ Ax such that, up to a
possible permutation of the coordinates, g is of upper triangular block
form as in (2.2) and each Ani

[gi] ⊂ Lni
is bounded.

Proof. If the orbit Ax is bounded there is nothing to prove. According
to Birch and Swinnerton-Dyer [1], if Ax is unbounded then Ax contains
a lattice with a representative as in (2.2) (up to a possible permutation
of the coordinates) with k = 2. Now the claim follows using induction
and appealing to Lemma 2.2. �

Proposition 2.4. It is enough to establish Theorem 1.1 for lattices
having a bounded A-orbit.

Proof. Let x ∈ Ln be arbitrary. By Lemma 2.3, Ax contains a lattice
[g] with g of upper triangular block form (up to a possible permu-
tation of the coordinates) with diagonal blocks representing lattices
with bounded orbits under the corresponding diagonal groups. As-
suming Theorem 1.1 for lattices having bounded orbits, and applying
Lemma 2.2 we may take g whose diagonal blocks represent stable lat-
tices. By Lemma 2.1, [g] is stable as well. �

2.2. Some technical preparations. We now discuss the subgroups
of a lattice x ∈ Ln which almost attain the minimum α(x) in (2.1).

Definition 2.5. Given a lattice x ∈ Ln and δ > 0, let

Minδ(x)
def
=
{

Λ ⊂ x : |Λ|
1

r(Λ) < (1 + δ)α(x)
}
,

Vδ(x)
def
= span

(⋃
{Λ : Λ ∈ Minδ(x)}

)
,

dimδ(x)
def
= dim Vδ(x).

We will need the following technical statement.
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Lemma 2.6. For any ρ > 0 there exists a neighborhood of the identity
W ⊂ G with the following property. Suppose 2ρ ≤ δ0 ≤ d + 1 and
suppose x ∈ Ln is such that dimδ0−ρ(x) = dimδ0+ρ(x). Then for any
g ∈ W and any δ ∈

(
δ0 − ρ

2
, δ0 + ρ

2

)
we have

Vδ(gx) = gVδ0(x). (2.4)

In particular, there is 1 ≤ k ≤ n such that for any g ∈ W and any
δ ∈

(
δ0 − ρ

2
, δ0 + ρ

2

)
, dimδ(gx) = k.

Proof. Let c > 1 be chosen close enough to 1 so that for 2ρ ≤ δ0 ≤ d+1
we have

c2
(

1 + δ0 +
ρ

2

)
< 1 + δ0 + ρ and

1 + δ0 − ρ
2

c2
> 1 + δ0 − ρ. (2.5)

Let W be a small enough neighborhood of the identity in G, so that
for any discrete subgroup Λ ⊂ Rn we have

g ∈ W =⇒ c−1 |Λ|
1

r(Λ) ≤ |gΛ|
1

r(gΛ) ≤ c |Λ|
1

r(Λ) . (2.6)

Such a neighborhood exists since the linear action of G on
⊕n

k=1

∧k
1 Rn

is continuous, and since we can write |Λ| = ‖v1 ∧ · · · ∧ vr‖ where
v1, . . . , vr is a generating set for Λ. It follows from (2.6) that for any
x ∈ Ln and g ∈ W we have

c−1α(x) ≤ α(gx) ≤ cα(x). (2.7)

Let δ ∈
(
δ0 − ρ

2
, δ0 + ρ

2

)
and g ∈ W . We will show below that

gMinδ0−ρ(x) ⊂ Minδ(gx) ⊂ gMinδ0+ρ(x). (2.8)

Note first that (2.8) implies the assertion of the Lemma; indeed, since
Vδ1(x) ⊂ Vδ2(x) for δ1 < δ2, and since we assumed that dimδ0−ρ(x) =
dimδ0+ρ(x), we see that Vδ0(x) = Vδ(x) for δ0 − ρ ≤ δ ≤ δ0 + ρ. So
by (2.5), the subspaces spanned by the two sides of (2.8) are equal to
gVδ0(x) and (2.4) follows.

It remains to prove (2.8). Let Λ ∈ Minδ0−ρ(x). Then we find

|gΛ|
1

r(gΛ)

(2.6)

≤ c |Λ|
1

r(Λ) ≤ c(1 + δ0 − ρ)α(x)

(2.5)

≤ c−1
(

1 + δ0 −
ρ

2

)
α(x)

(2.7)
< (1 + δ)α(gx).

By definition this means that gΛ ∈ Minδ(gx) which establishes the
first inclusion in (2.8). The second inclusion is similar and is left to the
reader. �
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2.3. The cover of A. Let x ∈ Ln and let ε > 0 be given. Define
Ux,ε = {Ux,ε

i }
n
i=1 where

Ux,ε
k

def
= {a ∈ A : dimδ(ax) = k for δ in a neighborhood of kε} . (2.9)

Theorem 2.7. Let x ∈ Ln be such that Ax is bounded. Then for any
ε ∈ (0, 1), Ux,ε

n 6= ∅.

In this subsection we will reduce the proof of Theorem 1.1 to Theo-
rem 2.7. This will be done via the following statement, which could be
interpreted as saying that a lattice satisfying dimδ(x) = n is ‘almost
stable’.

Lemma 2.8. For each n, there exists a positive function ψ(δ) with
ψ(δ)→δ→0 0, such that for any x ∈ Ln,

{Λi}`i=1 ⊂ Minδ(x) =⇒ Λ1 + · · ·+ Λ` ∈ Minψ(δ)(x). (2.10)

In particular, if dimδ(x) = n then α(x) ≥ (1 + ψ(δ))−1.

Proof. Let Λ,Λ′ be two discrete subgroups of Rd. The following in-
equality is straightforward to prove via the Gram-Schmidt procedure
for computing |Λ|:

|Λ + Λ′| ≤ |Λ| · |Λ
′|

|Λ ∩ Λ′|
. (2.11)

Here we adopt the convention that |Λ ∩ Λ′| = 1 when Λ∩Λ′ = {0}. By

induction on ` ≤ n, we now prove the existence of a function ψ`(δ)
δ→0−→

0 such that for any x ∈ Ln and any {Λi}`i=1 ⊂ Minδ(x), we have
Λ1 + · · ·+ Λ` ∈ Minψ`(δ)(x). For ` = 1 one can trivially pick ψ1(δ) = δ.
Assuming the existence of ψ`−1, set

ψ`(δ)
def
= max

(
(1 + δ)r(Λ)(1 + ψ`−1(δ))r(Λ

′)
) 1

r(Λ+Λ′) − 1,

where the maximum is taken over all possible values of r(Λ), r(Λ′), r(Λ+
Λ′). Clearly ψ`(δ) −→δ→0 0, and given x ∈ Ln and Λ1, . . . ,Λ` ∈
Minδ(x), set Λ = Λ1, Λ′ = Λ2 + · · · + Λ`, α = α(x) and note that
r(Λ + Λ′) = r(Λ) + r(Λ′)− r(Λ ∩ Λ′). We deduce from (2.11) and the
definitions that

|Λ + Λ′| ≤ |Λ| · |Λ
′|

|Λ ∩ Λ′|
≤ ((1 + δ)α)r(Λ) ((1 + ψ`−1(δ))α)r(Λ

′)

αr(Λ∩Λ′)

= (1 + δ)r(Λ)(1 + ψ`−1(δ))r(Λ
′)αr(Λ+Λ′),

and so Λ + Λ′ ∈ Minψ`(δ)(x) as desired. This completes the inductive
step.
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We take ψ(δ)
def
= maxn`=1 ψ`(δ). If ` ≤ n then (2.10) holds by con-

struction. If ` > n one can find a subsequence 1 ≤ i1 < i2 · · · < id ≤ n
such that r(

∑`
i=1 Λi) = r(

∑d
j=1 Λij) and in particular,

∑d
j=1 Λij is of fi-

nite index in
∑`

i=1 Λi. From the first part of the argument we see that∑d
j=1 Λij ∈ Minψ(δ)(x) and as the covolume of

∑`
i=1 Λi is not larger

than that of
∑d

j=1 Λij we deduce that
∑`

i=1 Λi ∈ Minψ`(δ)(x) as well.

To verify the last assertion, note that when dimδ(x) = n, (2.10)
implies the existence of a finite index subgroup x′ of x belonging to

Minψ(δ)(x). In particular, 1 ≤ |x′|
1
n ≤ (1 + ψ(δ))α(x) as desired. �

Proof of Theorem 1.1 assuming Theorem 2.7. By Proposition 2.4 we may
assume that Ax is bounded. Let εj ∈ (0, 1) so that εj →j 0. By Theo-
rem 2.7 we know that U

x,εj
n 6= ∅. This means there is a sequence aj ∈ A

such that dimδj(ajx) = n where δj = nεj → 0. The sequence {ajx} is
bounded, and hence has limit points, so passing to a subsequence we

let x′
def
= lim ajx. By Lemma 2.8 we have

1 ≥ lim sup
j

α(ajx) ≥ lim inf
j

α(ajx) ≥ lim
j

(1 + ψ(δj))
−1 = 1,

which shows that limj α(ajx) = 1. The function α is continuous on Ln
and therefore α(x′) = 1, i.e. x′ ∈ Ax is stable. �

3. Covers of Euclidean space

In this section we will prove Theorem 2.7, thus completing the proof
of Theorem 1.1. Our main tool will be McMullen’s Theorem 3.3. Before
stating it we introduce some terminology. We fix an invariant metric
on A, and let R > 0 and k ∈ {0, . . . , n− 1}.

Definition 3.1. We say that a subset U ⊂ A is (R, k)-almost affine
if it is contained in an R-neighborhood of a coset of a connected k-
dimensional subgroup of A.

Definition 3.2. An open cover U of A is said to have inradius r > 0
if for any a ∈ A there exists U ∈ U such that Br(a) ⊂ U , where Br(a)
denotes the ball in A of radius r around a.

Theorem 3.3 (Theorem 5.1 of [9]). Let U be an open cover of A with
inradius r > 0 and let R > 0. Suppose that for any 1 ≤ k ≤ n − 1,
every connected component V of the intersection of k distinct elements
of U is (R, (n−1−k))-almost affine. Then there is a point in A which
belongs to at least n distinct elements of U . In particular, there are at
least n distinct non-empty sets in U .
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3.1. Verifying the hypotheses of Theorem 3.3. Below we fix a
compact set K ⊂ Ln and a lattice x for which Ax ⊂ K. Furthermore,
we fix ε > 0 and denote the collection Ux,ε defined in (2.9) by U =
{Ui}ni=1.

Lemma 3.4. The collection U forms an open cover of A with positive
inradius.

Proof. The fact that the sets Ui ⊂ A are open follows readily from
the requirement in (2.9) that dimδ is constant for δ in a neighborhood
of kε. Given a ∈ A, let 1 ≤ k0 ≤ n be the minimal number k for
which dim(k+ 1

2
)ε(ax) ≤ k (this inequality holds trivially for k = n).

From the minimality of k0 we conclude that dimδ(ax) = k0 for any
δ ∈

[(
k0 − 1

2

)
ε,
(
k0 + 1

2

)
ε
]
. This shows that a ∈ Uk0 so U is indeed a

cover of A.
We now show that the cover has positive inradius. Let W ⊂ G be the

open neighborhood of the identity obtained from Lemma 2.6 for ρ
def
= ε

2
.

Taking δ0
def
= k0ε we find that for any g ∈ W , δ ∈

((
k0 − 1

4

)
ε,
(
k0 + 1

4

)
ε
)

we have that dimδ(gax) = k0. This shows that (W ∩A)a ⊂ Uk0 . Since
W ∩A is an open neighborhood of the identity in A and the metric on
A is invariant under translation by elements of A, there exists r > 0
(independent of k0 and a) so that Br(a) ⊂ Uk0 . In other words, the
inradius of U is positive as desired. �

The following will be used for verifying the second hypothesis of
Theorem 3.3.

Lemma 3.5. There exists R > 0 such that any connected component
of Uk is (R, k − 1)-almost affine.

Definition 3.6. For a discrete subgroup Λ ⊂ Rd of rank k, let

c(Λ)
def
= inf

{
|aΛ|1/k : a ∈ A

}
,

and say that Λ is incompressible if c(Λ) > 0.

Lemma 3.5 follows from:

Theorem 3.7 ([9, Theorem 6.1]). For any positive c, C there exists
R > 0 such that if Λ ⊂ Rn is an incompressible discrete subgroup of

rank k with c(Λ) ≥ c then
{
a ∈ A : |aΛ|1/k ≤ C

}
is (R, j)-almost affine

for some j ≤ gcd(k, n)− 1.

Proof of Lemma 3.5. We first claim that there exists c > 0 such that
for any discrete subgroup Λ ⊂ x we have that c(Λ) ≥ c. To see
this, recall that Ax is contained in a compact subset K, and hence
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by Mahler’s compactness criterion, there is a positive lower bound on
the length of any non-zero vector belonging to a lattice in K. On the
other hand, Minkowski’s convex body theorem shows that the shortest
nonzero vector in a discrete subgroup Λ ⊂ Rn is bounded above by a
constant multiple of |Λ|1/r(Λ). This implies the claim.

In light of Theorem 3.7, it suffices to show that there is C > 0 such
that if V ⊂ Uk is a connected component, then there exists Λ ⊂ x such

that V ⊂
{
a ∈ A : |aΛ|1/k ≤ C

}
. For any 1 ≤ k ≤ n, write grk for the

Grassmannian of k-dimensional subspaces of Rn. Define

M : Uk → grk, M(a)
def
= a−1Vkε(ax).

Observe thatM is locally constant on Uk. Indeed, by definition of Uk,
for a0 ∈ Uk there exists 0 < ρ < ε

2
such that dimδ(a0x) = k for any

δ ∈ (kε − ρ, kε + ρ). Applying Lemma 2.6 for the lattice a0x with ρ
and δ0 = kε we see that for any a in a neighborhood of the identity in
A,

M(aa0) = a−1
0 a−1Vkε(aa0x) = a−1

0 Vkε(a0x) =M(a0).

Now let Λ
def
= x ∩M(a) where a ∈ V ; Λ is well-defined since M is

locally constant. Then for a ∈ V ,

aΛ = a(x ∩M(a)) = a(x ∩ a−1Vkε(ax)) = ax ∩Vkε(ax).

By Lemma 2.8 we have that

|aΛ|1/k = |ax ∩Vkε(ax)|1/k < (1 + ψ(kε))α(ax).

Since α(ax) ≤ 1 we may take C
def
= 1+ψ(kε) to complete the proof. �

Proof of Theorem 2.7. Assume by contradiction that Ax is bounded
but Ux,ε

n = ∅ for some ε ∈ (0, 1). Then by Lemma 3.4,

U def
= {U1, . . . , Un−1} , where Uj

def
= Ux,ε

j ,

is a cover of A of positive inradius. Moreover, if V is a connected
component of Uj1 ∩ · · · ∩Ujk with j1 < · · · < jk ≤ n− 1, then Vk ⊂ Uj1
and j1 ≤ n−k. So in light of Lemma 3.5, the hypotheses of Theorem 3.3
are satisfied. We deduce that U = {U1, . . . , Un−1} contains at least n
elements, which is impossible. �
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4. Bounds on Mordell’s constant

In analogy with (2.1) we define for any x ∈ Ln and 1 ≤ k ≤ n,

Vk(x)
def
=
{
|Λ|1/r(Λ) : Λ ⊂ x, r(Λ) = k

}
, (4.1)

αk(x)
def
= minVk(x). (4.2)

The following is clearly a consequence of Theorem 1.1:

Corollary 4.1. For any x ∈ Ln, any ε > 0 and any k ∈ {1, . . . , n}
there is a ∈ A such that αk(ax) ≥ 1− ε.

As the lattice x = Zn shows, the constant 1 appearing in this corol-
lary cannot be improved for any k. Note also that the case k = 1 of
Corollary 4.1, although not stated explicitly in [9], could be derived
easily from McMullen’s results in conjunction with [1].

Proof of Corollary 1.2. Since the A-action maps a symmetric box B to
a symmetric box of the same volume, the function κ : Ln → R in (1.1)
is A-invariant. By the case k = 1 of Corollary 4.1, for any ε > 0 and
any x ∈ Ln there is a ∈ A such that ax does not contain nonzero
vectors of Euclidean length at most 1− ε, and hence does not contain

nonzero vectors in the cube
[
−
(

1√
n
− ε
)
,
(

1√
n
− ε
)]n

. This implies

that κ(x) ≥
(

1√
n

)n
, as claimed. �

The bound (1.3) is not tight for any n. This is shown in [14], along
with several slight improvements of (1.3). For example we prove that
if n ≥ 5 is congruent to 1 mod 4, then

κn ≥
1√

2n− 1(n− 1)(n−1)/2
.

Similar slight improvements can be obtained for all n not divisible by
4. See [14] for more details.

5. Two strategies for Minkowski’s conjecture

We begin by recalling the well-known Davenport-Remak strategy for
proving Minkowski’s conjecture. The function N(u) =

∏n
1 ui is clearly

A-invariant, and it follows that the quantity

Ñ(x)
def
= sup

u∈Rn

inf
v∈x
|N(u− v)|

appearing in (1.4) is A-invariant. Moreover, it is easy to show that if

xj → x in Ln then Ñ(x) ≥ lim supj Ñ(xj). Therefore, in order to show

the estimate (1.4) for x′ ∈ Ln, it is enough to show it for some x ∈ Ax′.
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Suppose that x satisfies (1.5) with d = n; that is for every u ∈ Rn

there is v ∈ x such that ‖u − v‖ ≤
√
n

2
. Then applying the inequality

of arithmetic and geometric means one finds
n∏
1

(
|ui − vi|2

) 1
n ≤ 1

n

n∑
1

|ui − vi|2 ≤
1

4

which implies |N(u − v)| ≤ 1
2n

. The upshot is that in order to prove
Minkowski’s conjecture, it is enough to prove that for every x′ ∈ Ln
there is x ∈ Ax satisfying (1.5). So in light of Theorem 1.1 we obtain:

Corollary 5.1. If all stable lattices in Ln satisfy (1.5), then Minkowski’s
conjecture is true in dimension n.

In the next two subsections, we outline two strategies for establishing
that all stable lattices satisfy (1.5). Both strategies yield affirmative
answers in dimensions n ≤ 7, thus providing new proofs of Minkowski’s
conjecture in these dimensions.

5.1. Using Korkine-Zolotarev reduction. Korkine-Zolotarev reduc-
tion is a classical method for choosing a basis v1, . . . , vn of a lattice
x ∈ Ln. Namely one takes for v1 a shortest nonzero vector of x and
denotes its length by A1. Then, proceeding inductively, for vi one takes
a vector whose projection onto (span(v1, . . . , vi−1))⊥ is shortest (among
those with nonzero projection), and denotes the length of this projec-
tion by Ai. In case there is more than one shortest vector the process is
not uniquely defined. Nevertheless we call A1, . . . , An the diagonal KZ
coefficients of x (with the understanding that these may be multiply
defined for some measure zero subset of Ln). Since x is unimodular we
always have ∏

Ai = 1. (5.1)

Korkine and Zolotarev proved the bounds

A2
i+1 ≥

3

4
A2
i , A2

i+2 ≥
2

3
A2
i . (5.2)

A method introduced by Woods and developed further in [6] leads to
an upper bound on covrad(x) in terms of the diagonal KZ coefficients.

The method relies on the following estimate. Below γn
def
= supx∈Ln α

2
1(x)

(where α1 is defined via (4.1)) is the Hermite constant.

Lemma 5.2 ([16], Lemma 1). Suppose that x is a lattice in Rn of

covolume d, and suppose that 2An1 ≥ dγ
(n+1)/2
n+1 . Then

covrad2(x) ≤ A2
1 −

A2n+2
1

d2γn+1
n+1

.
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Woods also used the following observation:

Lemma 5.3 ([16], Lemma 2). Let x be a lattice in Rn, let Λ be a
subgroup, and let Λ′ denote the projection of x onto (spanΛ)⊥. Then

covrad2(x) ≤ covrad2(Λ) + covrad2(Λ′)

As a consequence of Lemmas 5.2 and 5.3, we obtain:

Proposition 5.4. Suppose A1, . . . , An are diagonal KZ coefficients of
x ∈ Ln and suppose n1, . . . , nk are positive integers with n = n1 + · · ·+
nk. Set

mi
def
= n1 + · · ·+ ni and di

def
=

mi∏
j=mi−1+1

Aj. (5.3)

If
2Ami−1+1 ≥ diγ

(ni+1)/2
ni+1 (5.4)

for each i, then

covrad2(x) ≤
k∑
i=1

(
A2
mi−1+1 −

A2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

)
(5.5)

Proof. Let v1, . . . , vn be the basis of x obtained by the Korkine Zolotarev
reduction process. Let Λ1 be the subgroup of x generated by v1, . . . , vn1 ,

and for i = 2, . . . , k let Λi be the projection onto (
⊕i−1

1 Λj)
⊥ of the

subgroup of x generated by vmi−1+1, . . . , vmi
. This is a lattice of di-

mension mi, and arguing as in the proof of (2.3) we see that it has
covolume di. The assumption (5.4) says that we may apply Lemma 5.2
to each Λi. We obtain

covrad2(Λi) ≤ A2
mi−1+1 −

A2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

for each i, and we combine these estimates using Lemma 5.3 and an
obvious induction. �

Remark 5.5. Note that it is an open question to determine the num-
bers γn; however, if we have a bound γ̃n ≥ γn we may substitute it into
Proposition 5.4 in place of γn, as this only makes the requirement (5.4)
stricter and the conclusion (5.5) weaker.

Our goal is to apply this method to the problem of bounding the
covering radius of stable lattices. We note:

Proposition 5.6. If x is stable then we have the inequalities

A1 ≥ 1, A1A2 ≥ 1, . . . A1 · · ·An−1 ≥ 1. (5.6)
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Proof. In the above terms, the number A1 · · ·Ai is equal to |Λ| where
Λ is the subgroup of x generated by v1, . . . , vi. �

This motivates the following:

Definition 5.7. We say that an n-tuple of positive real numbersA1, . . . , An
is KZ stable if the inequalities (5.1), (5.2), (5.6) are satisfied. We denote
the set of KZ stable n-tuples by KZS.

Note that KZS is a compact subset of Rn. Recall that a composition
of n is an ordered k-tuple (n1, . . . , nk) of positive integers, such that
n = n1 + . . . + nk. As an immediate application of Corollary 5.1 and
Propositions 5.4 and 5.6 we obtain:

Theorem 5.8. For each composition I def
= (n1, . . . , nk) of n, define mi, di

by (5.3) and let W(I) denote the set{
(A1, . . . , An) : ∀i, (5.4) holds, and

k∑
i=1

(
A2
mi−1+1 −

A2ni+2
mi−1+1

d2
i γ

ni+1
ni+1

)
≤ n

4

}
.

If

KZS ⊂
⋃
I

W(I) (5.7)

then Minkowski’s conjecture holds in dimension n.

Rajinder Hans-Gill has informed the authors that using arguments
as in [6, 7], it is possible to verify (5.7) in dimensions up to 7, thus
reproving Minkowski’s conjecture in these dimensions.

5.2. Local maxima of covrad. The aim of this subsection is to prove
Corollary 1.3, which shows that in order to establish that all stable
lattices in Rn satisfy the covering radius bound (1.5), it suffices to
check this on a finite list of lattices in each dimension d ≤ n.

The function covrad : Ln → R is proper, but nevertheless has local
maxima, in the usual sense; that is, lattices x ∈ Ln for which there
is a neighborhood U of x in Ln such that for all x′ ∈ U we have
covrad(x′) ≤ covrad(x). Dutour-Sikirić, Schürmann and Vallentin [3]
gave a geometric characterization of lattices which are local maxima of
the function covrad, and showed that there are finitely many in each
dimension. Corollary 1.3 asserts that Minkowski’s conjecture would
follow if all local maxima of covrad satisfy the bound (1.5).

Proof of Corollary 1.3. We prove by induction on n that any stable
lattice satisfies the bound (1.5) and apply Corollary 5.1. Let S denote
the set of stable lattices in Ln. It is compact so the function covrad
attains a maximum on S, and it suffices to show that this maximum is
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at most
√
n

2
. Let x ∈ S be a point at which the maximum is attained.

If x is an interior point of S then necessarily x is a local maximum for
covrad and the required bound holds by hypothesis. Otherwise, there
is a sequence xj → x such that xj ∈ Ln r S; thus each xj contains
a discrete subgroup Λj with |Λj| < 1 and r(Λj) < n. Passing to a
subsequence we may assume that that r(Λj) = k < n is the same for
all j, and Λj converges to a discrete subgroup Λ of x. Since x is stable
we must have |Λ| = 1. Let π : Rn → (spanΛ)⊥ by the orthogonal

projection and let Λ′
def
= π(x).

It suffices to show that both Λ and Λ′ are stable. Indeed, if this
holds then by the induction hypothesis, both Λ and Λ′ satisfy (1.5) in
their respective dimensions k, n− k, and by Lemma 5.3, so does x. To
see that Λ is stable, note that any subgroup Λ0 ⊂ Λ is also a subgroup
of x, and since x is stable, it satisfies |Λ0| ≥ 1. To see that Λ′ is stable,

note that if Λ0 ⊂ Λ′ then Λ̃0
def
= x ∩ π−1(Λ0) is a discrete subgroup of x

so satisfies |Λ̃0| ≥ 1. Since |Λ| = 1 and π is orthogonal, we argue as in
the proof of (2.3) to obtain

1 ≤ |Λ̃0| = |Λ| · |Λ0| = |Λ0|,

so Λ′ is also stable, as required. �

In [3], it was shown that there is a unique local maximum for covrad
in dimension 1, none in dimensions 2–5, and a unique one in dimension
6. Local maxima of covrad in dimension 7 are classified in the manu-
script [2]; there are 2 such lattices. Thus in total, in dimensions n ≤ 7
there are 4 local maxima of the function covrad. We were informed by
Mathieu Dutour-Sikirić that these lattices all satisfy the covering radius
bound (1.5). Thus Corollary 1.3 yields another proof of Minkowski’s
conjecture, in dimensions n ≤ 7. In [4] and infinite list of lattices, one
in each dimension n ≥ 6, is defined. It was shown in [3, §7], that each
of these lattices (denoted there by [Ln, Qn]) is a local maximum for
the function covrad, and satisfies the bound (1.5). Dutour-Sikirić has
conjectured:

Conjecture 5.9 (M. Dutour-Sikirić). For each n ≥ 6, the lattice
[Ln, Qn] has the largest covering radius among all local maxima in
dimension n.

In light of Corollary 1.3, the validity of Conjecture 5.9 would imply
Minkowski’s conjecture in all dimensions.
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