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Abstract. We investigate the Mordell constant of certain families
of lattices, in particular, of lattices arising from totally real fields.
We define the almost sure value κµ of the Mordell constant with
respect to certain homogeneous measures on the space of lattices,
and establish a strict inequality κµ1 < κµ2 when the µi are finite
and supp(µ1)  supp(µ2). In combination with known results
regarding the dynamics of the diagonal group we obtain isolation
results as well as information regarding accumulation points of the
Mordell-Gruber spectrum, extending previous work of Gruber and
Ramharter. One of the main tools we develop is the associated
algebra, an algebraic invariant attached to the orbit of a lattice
under a block group, which can be used to characterize closed and
finite volume orbits.

1. Introduction

1.1. The Mordell constant of a lattice. Let Λ ⊂ Rn be a lattice.
By a symmetric box in Rn we mean a set of the form [−a1, a1]× · · · ×
[−an, an], and we say that a symmetric box is admissible for Λ if it
contains no nonzero points of Λ in its interior. The Mordell constant
of Λ is defined to be

κ(Λ)
def
= sup

B

Vol(B)

2nVol(Λ)
, (1)

where the supremum is taken over symmetric boxes B which are ad-
missible for Λ, and where Vol(B) denotes the volume of B and Vol(Λ)
denotes the volume of a fundamental domain for Λ. The purpose of
this paper is to study the quantity κ(·), as a function on the space of
lattices; in particular, to study its image, which we call the Mordell-
Gruber spectrum, its generic values, and isolation properties. Research
on these questions stems from the so-called ‘Mordell inverse problem’
[M] and their in-depth study was carried out in a number of papers,
notably those of Gruber and Ramharter. We refer to [GL, Chap. 3]
for a detailed history, and give more precise references to the literature
below.
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Since the function κ(Λ) is invariant under homotheties, there is no
loss of generality in restricting our attention to unimodular lattices (i.e.
lattices with Vol(Λ) = 1). We will denote the space of unimodular lat-
tices of dimension n by Ln. It is equipped with the transitive action

of the group G
def
= SLn(R), and the function κ is invariant under the

action of the subgroup A of diagonal matrices in G with positive di-
agonal entries1, since this action permutes symmetric boxes. We will
prove new results as well as apply known ones about this A-action on
Ln to derive consequences for κ — see [EL] for a survey of the recent
progress in the study of this action.

1.2. Homogeneous measures and intermediate lattices. From
the dynamical point of view it is natural to study homogeneous A-
invariant measures on Ln which we now define. Let HΛ ⊂ Ln be closed
orbit of a real algebraic subgroup H ⊂ G. We will see in Proposition 2.6
that the orbit HΛ supports a locally finite H-invariant measure which
is unique up to scaling.

Definition 1.1. Given an A-invariant closed orbit HΛ ⊂ Ln of a closed
connected real algebraic subgroup H ⊂ G we refer to the H-invariant
locally finite measure supported on HΛ as the homogeneous measure
associated with the orbit HΛ and denote it by µHΛ. The closed orbit
HΛ will be referred to as the homogeneous space corresponding to the
measure.

We emphasize that we allow our homogeneous spaces to be of infinite
measure; when the measure µHΛ is finite we say that the orbit HΛ
is of finite volume. It is well known that the orbit GΛ = Ln is of
finite volume and we denote the corresponding (unique) G-invariant
probability measure by µLn . The starting point of our discussion is the
following

Theorem 1.2. Let µ be a homogeneous A-invariant measure on Ln.
Then for µ-almost any Λ

κ(Λ) = max{κ(Λ′) : Λ′ is in the support of µ}. (2)

Theorem 1.2 is a standard consequence of the ergodicity of the A-
action and is proved in §3. We note that a well-known conjecture of
Margulis [M2] asserts that in dimension n ≥ 3 any A-invariant and
A-ergodic probability measure on Ln is homogeneous.

1For notational convenience we will not work with the full group of linear maps
preserving κ, which besides A, also contains non-positive diagonal matrices and
permutations of the coordinates.
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The following consequence of Theorem 1.2 answers a question of
Gruber, and improves on previous results of Gruber and Ramharter
[GR, R1, R2]. Note that Minkowski’s convex body Theorem implies
that κ(Λ) ≤ 1 for any Λ, this upper bound being attained by Λ = Zn.
Therefore taking µ = µLn we obtain:

Corollary 1.3. With respect to µLn, almost every lattice has Mordell
constant equal to 1.

A natural question is the existence and characterization of lattices
with Mordell constant strictly smaller than 1. In view of Theorem 1.2,
given a homogeneous A-invariant measure µ, it makes sense to define
the generic value κµ to be the almost sure value of κ with respect to
µ. One of the main results of this paper is the following:

Theorem 1.4. Let µ1, µ2 be two A-invariant homogeneous measures
such that µ1 is finite and supp(µ1)  supp(µ2). Then κµ1 < κµ2 .

In §6 we show by examples that the hypothesis that µ1 is finite in
Theorem 1.4 is essential. Nevertheless, we will establish Theorem 6.1
which extends Theorem 1.4 to the case of A-invariant homogeneous
measures which are not necessarily finite, under a suitable additional
assumption.

In order to prove Theorems 1.4 and 6.1 we will study homogeneous
A-invariant measures. As will be shown in Proposition 3.2, the groups
H that give rise to homogeneous A-invariant measures are block groups
obtained by choosing a partition P = tr1Q` of {1 . . . n} and defining

H(P) = {(gij) ∈ G : gij 6= 0⇒ i, j ∈ Q` for some `}◦ (3)

(where L◦ is the connected component of the identity in the group L).
In §4 we study orbits of block groups in detail. We attach to each orbit
HΛ of a block group an algebraic invariant we refer to as the associated
algebra which is a finite dimensional Q-algebra. Simple algebraic prop-
erties of the associated algebra allow us to determine whether the orbit
is closed or of finite volume (see Theorem 4.2). Whenever we have a
containment H1Λ ⊂ H2Λ of orbits as above, we have a reverse inclu-
sion of the associated algebras and the condition which allows us to
generalize Theorem 1.4 is a simple algebraic property of the inclusion
of the associated algebras.

Definition 1.5. A lattice Λ ∈ Ln is said to be intermediate (resp.
intermediate of finite volume type) if it belongs to an A-invariant ho-
mogeneous space (resp. of finite volume) HΛ which is strictly contained
in Ln.
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The case H = A will be of particular interest.

Definition 1.6. A lattice Λ for which AΛ is closed will be referred
to as an algebra lattice. If furthermore the orbit is of finite volume
(equivalently, if it is compact) then the lattice is said to be a number
field lattice.

Corollary 5.3 will justify our choice of terminology. It shows that
a lattice Λ is an algebra (resp. number field) lattice if and only if the
associated algebra is n-dimensional (resp. is an n-dimensional field)
over the rationals.

Combining Theorems 1.2 and 1.4 we obtain the following

Corollary 1.7. Let Λ ∈ Ln be an intermediate lattice of finite volume
type, then κ(Λ) < 1.

Corollary 1.7 is probably not new for number field lattices (see e.g.
[R1]) but we could not locate a suitable reference.

1.3. Isolation results. The results below concern isolation properties
that follow from Theorem 1.4 and a rigidity result for the A-action in
dimension n ≥ 3 (Theorem 7.1).

Definition 1.8. Let Λ be a lattice and let ε0 > 0. We say that Λ is
ε0-isolated if for any 0 < ε < ε0 there is a neighborhood U of Λ in Ln,
such that for any Λ′ ∈ U r AΛ, κ(Λ′) > κ(Λ) + ε.

We say that Λ is locally isolated if it is ε0-isolated for some ε0 > 0,
and that Λ is strongly isolated if it is ε0-isolated for ε0 = 1− κ(Λ).

Theorem 1.9. Let n ≥ 3, and let Λ be a number field lattice, associated
with the degree n number field F . Then Λ is locally isolated. Moreover
Λ is strongly isolated if and only if there are no intermediate fields
Q  K  F .

Theorem 1.9 extends results of Ramharter [R1], who shows local
isolation under an additional assumption, but does not require n ≥ 3.
Our methods crucially rely on the hypothesis n ≥ 3. An immediate
consequence is:

Corollary 1.10. If n ≥ 3 is prime, then any number field lattice in
Rn is strongly isolated.

We remark that when n is prime, an intermediate lattice of finite
volume type is automatically a number field lattice. Extending another
result of [R1] we show:

Corollary 1.11. For any n ≥ 3, the set of strongly isolated lattices is
dense in Ln.
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The fundamental difference between the cases n = 2 and n ≥ 3 is
highlighted in the following:

Theorem 1.12. In dimension n = 2 there are no strongly isolated
lattices.

Theorem 1.12 relies on work of Gruber [G]. In contrast with Theo-
rem 1.9, intermediate lattices which are not number field lattices are
typically not isolated. In §7 we will define a notion of ‘local relative
isolation’ and prove:

Theorem 1.13. Let µ be an A-invariant homgeneous probability mea-
sure corresponding to a finite volume orbit HΛ with A  H  G. Then
almost any lattice with respect to µ is not locally isolated but is locally
isolated relative to H.

1.4. The reduced Mordell-Gruber spectrum. We denote by MGn

the Mordell-Gruber spectrum, which is the set of numbers κ(Λ) where
Λ ranges over all lattices in dimension n. We briefly summarize some of
the known facts about the Mordell-Gruber spectrum. Siegel (see [GL])

showed that κn
def
= inf MGn > 0. Many things are known about MG2,

see [G]. The values κ2 and κ3 are known, the latter by a difficult work
of Ramharter [R3]. In [R3] Ramharter also showed that κ3 belongs to
MG3 and is an isolated2 point. Various lower bounds on κn have been
proved by various authors, and recently [SW] the authors obtained the
lower bound κn ≥ n−n/2.

We wish to study accumulation points of MGn. There is a simple
trick to generate such points which we now describe. As we explain
in §8, it can be deduced from results of Gruber that MG2 has many
accumulation points. We say that a lattice Λ ⊂ Rn is decomposable if
n = n1+n2, ni > 0, and Rn = Rn1⊕Rn2 is the direct sum decomposition
corresponding to partitioning the coordinates into subsets of sizes n1

and n2, and we can write Λ = Λ1 ⊕ Λ2, where Λi = Λ ∩ Rni . In this
case we clearly have κ(Λ) = κ(Λ1)κ(Λ2). Taking direct sums with Zn2

we get embeddings MGn1 ↪→MGn for any n1 < n. We are interested
in the part of the spectrum not arising in this way. That is, we define
the reduced Mordell-Gruber spectrum to be

M̂Gn
def
= {κ(Λ) : Λ ⊂ Rn a lattice which is not decomposable}.

As will be seen in Proposition 5.10, number field lattices are never de-
composable. We are interested in the existence of accumulation points

of M̂Gn.

2The isolation of a number in a subset of R should not be confused with the
isolation property of Definition 1.8.
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Theorem 1.14. Let µ be an A-invariant homogeneous probability mea-
sure corresponding to a finite volume orbit HΛ with A  H. Then
there is a sequence of number field lattices Λk for which κ(Λk) ↗ κµ.

In particular, κµ is not an isolated point of M̂Gn.

Taking µ to be the Haar measure we obtain

Corollary 1.15. For any n there is a sequence (Λk) of number field
lattices for which κ(Λk)↗ 1. In particular 1 is not an isolated point of

M̂Gn.

Given a subset M ⊂ R, we denote M (0) def
= M , and by M (k+1) the

elements of M (k) which are limits of strictly increasing sequences in
M (k).

Theorem 1.16. For any natural number t, there is n so that 1 ∈
M̂G

(t)

n .

1.5. Organization of the paper. In sections §2 and §3 we recall some
standard results and prove some useful results about closed orbits for
actions of algebraic groups on Ln. From these we deduce Theorem 1.2.
In §4 we introduce the associated algebra of a lattice and characterize
intermediate lattices in terms of its algebraic properties. As we explain
in §5, the associated algebra of a lattice Λ can be used to classify all
A-invariant homogeneous subsets containing Λ. Moreover in §5.2 we
show how to explicitly construct all intermediate lattices. The proof of
Theorem 1.4 is given in §6 and of the isolation results in §7. In §8 we
recall results of Gruber and Ramharter for dimension n = 2, give some
more information about MG2, and prove Theorem 1.12.
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ber 2011, as part of the program Combinatorics, Number theory, and
Dynamical Systems. The support of ESI is gratefully acknowledged.
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Kleinbock and Nikolay Moshchevitin for useful discussions and pointers
to the literature. We gratefully acknowledge support of European Re-
search Council grants DLGAPS 279893 and Advanced research Grant
228304, ISF grants 190/08, 357/13, and the Chaya Fellowship.

2. Generalities

The following two propositions are standard and explained in [GL].
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Proposition 2.1. The function κ : Ln → R has the following proper-
ties:

(i) For all Λ, κ(Λ) ≤ 1.
(ii) If Λk → Λ then κ(Λ) ≤ lim inf κ(Λk); i.e. κ is lower semi-

continuous.
(iii) For all Λ and all a ∈ A, κ(aΛ) = κ(Λ).
(iv) κ(Zn) = 1.

Proposition 2.2 (Mahler’s compactness criterion). A subset X ⊂ Ln
is bounded (i.e. has compact closure) if and only if there is a neighbor-
hood U of 0 in Rn such that for any Λ ∈ X, Λ ∩ U = {0}.

Corollary 2.3. If Λ ∈ Ln and B0 is a symmetric cube whose volume
is smaller than 2nκ(Λ), then there is a ∈ A such that B0 is admissible
for aΛ. In particular for any κ0 > 0 there is a compact K ⊂ Ln such
that for any Λ ∈ Ln with κ(Λ) ≥ κ0, there is a ∈ A such that aΛ ∈ K.

Proof. For the first assertion, let B be an admissible symmetric box
such that Vol(B) > Vol(B0), and let a ∈ A such that aB is a cube
symmetric about the origin. By considering volumes we see that B0 ⊂
aB. This proves the first assertion. The second assertion follows via
Proposition 2.2. �

2.1. Algebraic groups and Q-structures. We use the term real al-
gebraic group to refer to a finite index subgroup of the set of real points
of a Zariski closed group. Often we simply say algebraic group. With
this terminology an algebraic group need not be Zariski closed but is
of finite index in its Zariski closure. In the remainder of this section we
will recall several classical results about algebraic groups and lattices in
Lie groups. We refer the reader to [Rag] for more details and pointers
to the literature. In this paper, we have preferred a concrete point of
view so we will work throughout with subgroups of G = SLn(R) and
with the space Ln ∼= SLn(R)/ SLn(Z), rather than the more general
setup where G is a real algebraic group and G/Γ is the quotient of G
by a lattice Γ. All the results we state below are valid in this more
general context.

Given a lattice Λ ∈ Ln we denote VΛ
def
= spanQΛ. Note that VΛ is

a Q-vector subspace of Rn such that VΛ ⊗Q R = Rn, but VΛ need
not coincide with the standard Q-structure Qn. We say that a matrix
g ∈ G is Λ-rational if gVΛ ⊂ VΛ; the reader may verify that g ∈ G(Q)
if and only if g is Zn-rational. As in [Rag, Preliminaries, §2] one uses
a Q-structure on Rn to define Q-algebraic subgroups of SLn(R). If we
use the Q-structure of VΛ we will say that such a subgroup H is defined
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over Q with respect to the Q-structure induced by Λ. We will use two
characterizations of such subgroups. They are the algebraic groups H
whose Λ-rational points are Zariski dense in their Zariski closure; they
are also the algebraic groups H such that for any g ∈ G for which
gZn = Λ, the conjugate g−1Hg is a Q-subgroup of G (with respect to
the standard Q-structure Qn). See [Rag] for definitions of morphisms
defined over Q and Q-characters.

We recall the following classical fact, see e.g. [Rag, Chap. XIII].

Proposition 2.4 (Borel Harish-Chandra). Let H ⊂ G be an algebraic
group defined over Q with respect to the Q-structure induced by Λ ∈ Ln.
Then the orbit HΛ ⊂ Ln is of finite volume if and only if H◦ has
no non-trivial Q-characters. In particular, if H is semisimple or is
generated by unipotent elements then HΛ is of finite volume.

2.2. Closed orbits of real algebraic subgroups. The following ob-
servation is useful.

Proposition 2.5. Let Λ ∈ Ln and let H be an algebraic subgroup of
G. Denote by HΛ the stabilizer of Λ in H and by H0 the Zariski closure
of HΛ. Then HΛ is a lattice in H0. Moreover, if the orbit HΛ is closed
in Ln then the connected component H◦0 of the identity in H0 contains
the unipotent elements of H.

Proof. We use the Q-structure induced by Λ. For any Q-character χ of
an algebraic group containing HΛ, the image χ(HΛ) is bounded below
by a bounded denominators argument. Therefore χ(HΛ) is finite, which
implies the finiteness of χ(H0). In particular, χ is trivial on (H0)◦. By
Proposition 2.4, (H0)Λ is a lattice in H0.

Since H,H0 are commensurable, the same holds for HΛ, (H0)Λ. It
follows that HΛ is of finite index in (H0)Λ and thus HΛ is a lattice in
H0 as well.

Now suppose u is a unipotent element of H and suppose HΛ is
closed. There is a one-parameter unipotent subgroup {u(t)} ⊂ H such
that u = u(1). By a classical result of Margulis [M1], the trajectory
{u(t)Λ : t ≥ 0} is not divergent. The orbit map hHΛ 7→ hΛ is proper
since we have assumed that HΛ is closed, and this implies that the orbit
{u(t)HΛ : t ≥ 0} is non-divergent in the quotient H/HΛ. We have an
H-equivariant factor map H/HΛ → H/H0, so the orbit {u(t)H0 : t ≥
0} is non-divergent in H/H0, which is an algebraic variety on which a
unipotent trajectory is either a fixed point or is divergent. This implies
that {u(t)} ⊂ H0, and by connectedness, {u(t)} ⊂ H◦0 . �

As we allow homogeneous subspaces of infinite measure, we need the
following fact:
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Proposition 2.6. Let H ⊂ G be a real algebraic group and Λ ∈ Ln
such that HΛ is closed. Then there is an H-invariant locally finite
measure on HΛ. This measure is unique up to scaling.

We remark that in contrast to finite volume homogeneous spaces, for
infinite volume homogeneous spaces H need not be unimodular. We
also remark that in the statement of the Proposition one may replace
Ln with any homogeneous space G/Γ where G is a real algebraic group
and Γ is a lattice.

Proof. Let HΛ denote the stabilizer of Λ in H. There is an injective
orbit map

H/HΛ → Ln, hHΛ 7→ hΛ,

and the assumption that HΛ is closed implies that this map is a home-
omorphism onto its image. So it is enough to prove that there is an
H-invariant locally finite measure on H/HΛ. For a Lie group L, let ∆L

denote its modular function. In light of general facts about quotients
of Lie groups (see e.g. [Rag, Chapter 1]), it is enough to show that

∆H |HΛ
= ∆HΛ

. (4)

Since HΛ is discrete, it is unimodular, so ∆HΛ
is trivial. So we need to

show that the restriction of ∆H to HΛ is trivial. We have the explicit
formula

∆H(h) = | det Ad(h)|u|,
where u is the Lie algebra of the unipotent radical U of H. In other
words ∆H(h) is the multiplicative factor by which conjugation by h
multiplies the Haar measure on U .

We will now show that Γ
def
= U ∩ HΛ is a lattice in U . Indeed, let

H0 be as in Proposition 2.5, let H ′ be the subgroup of H generated
by the unipotent elements of H, and let U0, U

′ denote respectively the
unipotent radicals of H0, H

′. By Proposition 2.5,

H ′ ⊂ (H0)◦ ⊂ H,

which implies

U ⊂ U0 ⊂ U ′.

On the other hand, H ′ is a characteristic subgroup of H, and hence
so is its unipotent radical. Therefore U ′ is normal in H, which implies
that U = U ′. In particular U = U0. It now follows from [Rag, Cor.
8.28] that Γ ∩ U is a lattice in U , as required. Since conjugation by
elements of HΛ preserves both U and HΛ, it fixes Γ and so fixes the
covolume of U/Γ. This implies (4). �
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3. Ergodicity and consequences

In this section we prove Theorem 1.2 by establishing the ergodicity
of the A-action with respect to homogeneous A-invariant measures (see
Proposition 3.6). In order to establish this, we study in some detail
the structure of homogeneous A-invariant spaces in Ln.

Let X be a locally compact topological space, let µ be a locally
finite Borel measure on X, and let A be a group acting continuously
on X preserving µ. The action is called ergodic if any invariant set
is either of zero measure, or its complement is of zero measure. Let
supp(µ) denote the topological support of µ. Then it is well-known (see
e.g. [Z]) that when the action is ergodic, any A-invariant measurable
function X → R is almost everywhere constant and for almost every
x ∈ X, the orbit Ax is dense in supp(µ).

Theorem 3.1. Let X = AΛ0 be an orbit-closure for the A-action on
Ln. Then

κ(Λ0) = sup{κ(Λ) : Λ ∈ X}.
In particular, if µ is an A-invariant and A-ergodic measure, then for
µ-almost every Λ0 we have

κµ
def
= sup{κ(Λ) : Λ ∈ supp(µ)} = κ(Λ0) (5)

and so the supremum in (5) is attained. Moreover supp(µ) contains a
lattice Λmax with κ(Λmax) = κµ such that the cube C of volume 2nκµ
is admissible for Λmax (so the supremum in (1) is attained for Λ =
Λmax, B = C).

Proof. By Proposition 2.1(ii),(iii), for any Λ ∈ X, κ(Λ) ≤ κ(Λ0). This
proves the first assertion. The second one follows taking X = supp(µ)
and recalling that almost every A-orbit in X is dense.

For the last assertion, let Λ ∈ supp(µ) with κ(Λ) = κµ and let Ck
be a sequence of symmetric cubes with Vol(Ck)↗ 2nκ(Λ). For each k,
by Corollary 2.3 there is ak ∈ A so that Ck is admissible for ak(Λ) and
the sequence {akΛ} is contained in a bounded subset of Ln. Let Λmax

be a limit of a converging subsequence of {akΛ}. Then Λmax ∈ supp(µ)
since supp(µ) is closed and A-invariant. Moreover by construction, the
cube of volume 2nκµ is admissible for Λmax. This implies that Λmax has
the required properties. �

3.1. Block groups. Given a partition of the indices {1, . . . , n}

P def
=
(
{1, . . . , n} =

⊔
Q`

)
, (6)
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we define the block group corresponding to P to be the connected sub-
group H = H(P) of G whose Lie algebra is

h = a⊕
⊕
`

⊕
s,t∈Q`

gst (7)

where a is the Lie algebra of A and gst is the one-dimensional Lie
algebra spanned by the matrix with 1 in the entry (s, t) and 0 elsewhere
(note that we always have A ⊂ H). We refer to the elements Q` of P
as the blocks of the partition and denote by |P| the number of blocks.
When the blocks are of equal size we say that P is an equiblock partition
and H(P) is an equiblock group. Given a partition P we shall denote
by ∼P the equivalence relation it defines on {1, . . . , n}. For example,
up to permutations of indices, the three equiblock partitions for n = 4
are

P0 = ({1}, {2}, {3}, {4}) , P2 = ({1, 2}, {3, 4}) , P2 = ({1, 2, 3, 4}) ,
and the corresponding equiblock groups are

H(P0) = A, H(P1) =


∗ ∗
∗ ∗

∗ ∗
∗ ∗

 ∩G, H(P2) = G.

Our interest in block groups is explained by the following:

Proposition 3.2. Let HΛ ⊂ Ln be a homogeneous space (i.e. a closed
orbit of a closed connected subgroup H ⊂ G). Then if HΛ is A-
invariant, then A ⊂ H and H = H(P) for some partition P.

We will use the following simple Lemma whose proof is left to the
reader.

Lemma 3.3. If H1Λ ⊂ H2Λ is a containment of two orbits in Ln of
closed groups H1, H2 and H1 is connected, then H1 ⊂ H2.

�

Proof of Proposition 3.2. The fact thatA ⊂ H follows from Lemma 3.3.
Note that if H ⊂ G is a closed connected subgroup containing the di-
agonal group then in the above notation, the Lie algebra of H satisfies
h = a ⊕

⊕
gst, where the sum is taken over some subset of the set of

pairs (s, t). Since h is a Lie algebra, gs,t, gt,u ⊂ h implies gs,u ⊂ h. We
need to show that

gs,t ⊂ h =⇒ gt,s ⊂ h.

Let ust ⊂ H be the one parameter unipotent group with Lie algebra
gst. There exists a one-parameter subgroup A0 ⊂ A, such that the
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group B generated by A0, {uts(x)} is the Borel subgroup of the copy
of SL2(R) ⊂ G which is generated by the two groups uts(x), ust(x). We
denote this copy of SL2(R) by H0. As HΛ is assumed to be closed we
have HΛ ⊃ BΛ. By the work of Ratner (see [Ra] for a short proof) we
have H0Λ = BΛ and so we conclude that {ust(x)Λ : x ∈ R} ⊂ HΛ. By
Lemma 3.3, {ust(x)} ⊂ H as desired. �

We will see in Corollary 5.4 that in the case HΛ is of finite volume,
there are further restrictions on the partition P in the above proposi-
tion.

3.2. Structure of A-invariant homogeneous measures. Let H =
H(P) be a block group. Then it can be written as a direct product
H(P) = Z(P) · S(P), where

Z(P)
def
= {a ∈ A : a centralizes H(P)}

(that is, Z(P) consists of the positive diagonal matrices in H(P) that
have constant eigenvalues along the blocks of P), and S(P) is the com-
mutator group of H(P). More concretely, S(P) is the semisimple group
of matrices having the block structure given by P with the further re-
quirement that the determinant of each block is 1.

The following proposition shows that an A-invariant homogeneous
measure has a simple product structure.

Proposition 3.4. Let H = H(P) be a block group, HΛ an A-invariant
homogeneous space, and µ = µHΛ the corresponding A-invariant mea-
sure. Then there is a decomposition of Z = Z(P) as a direct product
Z = Zs · Za such that

(1) If H1 = Za · S, where S = S(P), then H1Λ is of finite volume.
(2) The map

Zs → ZsΛ, z 7→ zΛ

is proper, and a homeomorphism onto its image. In particular,
the orbit ZsΛ is divergent.

(3) The map

Zs ×H1Λ→ HΛ, (z, hΛ) 7→ zhΛ

is a homeomorphism onto its image, under which µ is identified
with ν × µH1Λ, where ν is Haar measure on Zs.

Remark 3.5. Note that, since Z is central in H, the conclusions (1)
and (2) hold for any Λ′ ∈ HΛ.



ON THE MORDELL-GRUBER SPECTRUM 13

Proof. Let H1 = (H0)◦ ⊂ H where H0 denotes the Zariski closure of
HΛ. It follows from Proposition 2.5 that the orbit H1Λ is of finite
volume, and also that S ⊂ H1. Since

S ⊂ H1 ⊂ Z · S = H

we find that H1 = Za · S, where Za
def
= H1 ∩ Z which establishes (1).

Let Zs be any direct complement of Za in Z; that is, a subgroup
of Z such that Z = Zs · Za (a direct product). Consider the natural
embeddings

H1/(H1)Λ ↪→ H/HΛ ↪→ HΛ ⊂ Ln. (8)

As the orbits HΛ, H1Λ are closed, the embeddings in (8) are proper.
We claim that the natural map

Zs × (H1/(H1)Λ)→ H/HΛ, (z, h(H1)Λ) 7→ zhHΛ, (9)

is a homeomorphism. Once this is established, (2) and the first state-
ment of (3) follow. The statement regarding the measures now follows
from the uniqueness of an H-invariant measure [Rag, Chap. 1] on
H/HΛ.

We establish (9). Because H = Zs ·H1 the map is clearly onto. It is
1-1 because assuming (z1, h1(H1)Λ) 6= (z2, h2(H1)Λ) than if z1h1HΛ =
z2h2HΛ then since Zs is central, z−1

2 z1h
−1
2 h1 ∈ HΛ. In particular, this

element belongs to H0 - the Zariski closure of HΛ. It follows that
z−1

2 z1 ∈ H0 and in turn that the one-parameter subgroup generated by
it lies in H0 as well. As this subgroup is connected, it belongs to H1 and
so z−1

2 z1 ∈ H1. Since Zs ∩H1 = e we conclude that z1 = z2 and finally
that h1 = h2 because of the injectivity on the left of (8). We are thus
left to justify the properness of the map (9). Note that (H1)Λ < HΛ

is of finite index and thus, as far as properness is concerned, it is
enough to prove properness of Zs × (H1/(H1)Λ)→ H/(H1)Λ. Because
H = Zs · H1 is a direct product, this is equivalent to saying that the
map Zs → H/(H1)Λ is proper. The latter is of course implied by the
stronger statement that the map Zs → H/H1

∼= Zs is proper (in fact a
homeomorphism). �

Proposition 3.6. Let µ be an A-invariant homogeneous measure on
Ln corresponding to the closed orbit HΛ. Then the A-action is ergodic
with respect to µ.

Proof. We use the notation of Proposition 3.4. Identifying the orbit HΛ
with the product Zs × H1Λ we see that, since Zs ⊂ A, the statement
reduces to the ergodicity of the action of A ∩ H1 with respect to the
finite H1-invariant measure µH1Λ. The latter statement follows from
the Howe-Moore Theorem (see e.g. [Z]). �
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Proof of Theorem 1.2. The statement follows from Theorem 3.1 and
Proposition 3.6. �

Remark 3.7. We use the notation of Proposition 3.4.

(1) It is clear from Proposition 3.4, that the closed orbit HΛ is of
finite volume if and only if Z = Za.

(2) The group Za in Proposition 3.4 is the center of H1 and so
is a Q-group itself (with respect to the Q-structure induced
by Λ). Moreover, it has no non-trivial Q-characters as these
will induce corresponding ones on H1 because H1 is a direct
product H1 = Za ·S. By the Borel Harish-Chandra Theorem it
follows that ZaΛ is of finite volume (which in this case means
compact) or in other words, if we denote ZΛ = StabZ(Λ) then
ZΛ is a lattice in Za. As Za ⊂ A ∼= Rn−1 we conclude that in
particular, the discrete subgroup ZΛ is a finitely generated free
abelian group with rank(ZΛ) = dimZa.

(3) Combining (1),(2) we conclude that the orbit HΛ is of finite
volume if and only if rank(ZΛ) = dimZ.

4. Intermediate lattices

We now introduce intermediate lattices, and the homogeneous sub-
spaces they belong to, in detail. This builds on and expands earlier
work of several authors, see [LW, T, McM, ELMV]. Our approach is
close to that of [McM], in that we emphasize the structure of algebras
of matrices associated with a lattice. We introduce for any lattice an
associated algebra. In §4.3 we characterize intermediate lattices and
the homogeneous spaces they belong to by simple algebraic properties
of the associated algebra. In §5.2 we explain some constructions of
lattices, and show using the aforementioned characterization, that the
constructions give rise to all intermediate lattices. In turn, this gives
rise to an explicit construction of all homogeneous A-invariant mea-
sures. These results will be an important ingredient in the proof of
Theorem 1.4.

4.1. Q-algebras. Let Fj, j = 1 . . . r be number fields and consider
the direct sum B = ⊕rj=1Fj. Equipped with coordinate-wise addition
and multiplication, B is a finite dimensional Q-algebra. By the Artin-
Wedderburn Theorem, any commutative finite dimensional semisimple
Q-algebra is of the above form.

By a homomorphism between two such algebras we shall mean a
map that respects the algebraic operations and sends the identity of
one algebra to the identity element of the other. If B is an algebra as
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above, then an algebra B′ ⊂ B will be referred to as a subalgebra if the
inclusion B′ ↪→ B is a homomorphism; in particular, B and B′ share
the same unit. A subalgebra B′ ⊂ B will be referred to as a subfield
if it is a field. We emphasize that if B = ⊕r1Fj as above, with r > 1,
then the Fj’s are not subalgebras nor subfields.

The theory of algebras of the above form is almost completely analo-
gous to the theory of number fields with only minor adaptations result-
ing from the fact that we deal with direct sums of number fields. For
example it is clear that if B = ⊕r1Fj is an n-dimensional Q-algebra,
then it has exactly n distinct homomorphisms into C and those are
obtained by first projecting to the components Fj and then composing
with the various embeddings of the fields Fj into C.

4.2. The associated algebra. Let D denote the algebra of n × n
diagonal real matrices. For i = 1, . . . , n, let pi : D → R be the algebra
homomorphism diag(d1, . . . , dn) 7→ di. Given a partition P as in (6) we
denote by D(P) the subalgebra of D defined by

D(P)
def
= {x ∈ D : pi(x) = pj(x) whenever i ∼P j} .

Definition 4.1. Let Λ ⊂ Rn be a lattice.

(1) We denote VΛ
def
= spanQ(Λ).

(2) For any partition P we define the associated algebra of Λ with
respect to P to be

AΛ(P)
def
= {a ∈ D(P) : aVΛ ⊂ VΛ}.

We denote by P0 the partition into singletons, denote AΛ(P0)
simply by AΛ, and refer to it as the associated algebra to Λ.

(3) Given a subalgebra B ⊂ AΛ we define the associated partition
PB to be the partition of {1, . . . , n} induced by the equivalence
relation

i ∼ j ⇐⇒ pi|B ∼ pj|B.
A partition of the form PB will be referred to as an algebra
partition for Λ and in case B ⊂ AΛ is a subfield, as a field
partition for Λ.

Examples for the case n = 4 will be given in §5.4. The following
result demonstrates the usefulness of the associated algebra for the
study of the A-action on Ln:

Theorem 4.2. Let Λ ∈ Ln, P a partition, and H = H(P). The orbit
HΛ is closed if and only if P is an algebra partition and is of finite
volume if and only if P is a field partition.



16 URI SHAPIRA AND BARAK WEISS

Theorem 4.2 is a compressed version of Theorem 4.8, which is the
main result of this section. Theorem 4.8 will be stated and proved
below after some more preparations. As will be seen in Corollary 4.6,
the question of whether or not a partition P is an algebra partition has
to do with the dimension of the corresponding associated algebra. Note
that the elements of AΛ(P) are simply the rational matrices in D(P)
with respect to the rational structure induced by Λ. The associated
algebra of a lattice Λ is a commutative algebra over Q. It is finite-
dimensional because it can be conjugated into Matn×n(Q).

Proposition 4.3. For any lattice Λ and any partition P we have that
dimQAΛ(P) = dimR (AΛ(P)⊗Q R). In particular, dimQAΛ(P) ≤ |P|
with equality if and only if D(P) is a subspace of Matn×n(R) which is
defined over Q with respect to the Q-structure induced by Λ.

Proof. It is well known that for any number field F one has the equality
dimQ F = dimR (F ⊗Q R). Since AΛ(P) is a semisimple algebra, the
Artin-Wedderburn theorem implies that it is isomorphic to a direct
sum of number fields and the first part of the Proposition follows.
The dimension bound follows from the natural inclusion AΛ(P) ⊗Q
R ⊂ D(P). Finally, as noted above, with respect to the Q-structure
induced by Λ, AΛ(P) consists of exactly the rational points of D(P)
and therefore, by the first part, D(P) has a basis consisting of rational
matrices if and only if dimQAΛ(P) = dimRD(P). �

Since matrices in D(P) commute with matrices in H(P), we have:

Proposition 4.4. The assignment Λ 7→ AΛ(P) is constant along H(P)-
orbits. Therefore, AΛ(P) is an invariant attached to the orbit H(P)Λ.

�

Theorem 4.5. Let Λ ∈ Ln be a lattice and B ⊂ AΛ a subalgebra.
Then there is an isomorphism of Q-algebras ϕ :

⊕r
j=1 Fj → B, where

the Fj’s are totally real number fields of degrees dj
def
= deg(Fj/Q) such

that

PB =
⊔

j=1,...,r
k=1,...,dj

Ij,k (10)

where

(1) For each j, the number sj
def
= |Ij,k| is independent of k.

(2) For each j, k, there is a field embedding σ : Fj → R such that
for all i ∈ Ij,k, σ = pi ◦ ϕ|Fj

. Moreover any field embedding of
Fj appears for some choice of k.
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Before proving Theorem 4.5 we deduce a characterization of the par-
titions that Theorem 4.2 may be applied to.

Corollary 4.6. Let Λ ∈ Ln be given. A partition P is an algebra
partition for Λ if and only if dimQAΛ(P) = |P| and in that case,

P = PB, where B = AΛ(P).

Proof of Corollary 4.6. Suppose P is an algebra partition for Λ; that
is, there exists a subalgebra B ⊂ AΛ such that P = PB. It follows
from the definition that AΛ(PB) ⊃ B so by Proposition 4.3, in order to
conclude that dimQAΛ(PB) = |PB|, it is enough to show that dimQB =
|PB|. The latter statement follows from the description of PB given in
Theorem 4.5.

In the other direction, assume that P satisfies dimQAΛ(P) = |P|
and denote B = AΛ(P). Then it follows from the definitions that P
refines PB. Again, by Theorem 4.5 we deduce that dimQB = |PB| and
so the partitions P ,PB are equal. �

For the proof of Theorem 4.5 we will require the following well-known
fact (for which we were unable to find a reference).

Lemma 4.7. Let F be a number field of degree d over Q, let σi : F →
C, i = 1, . . . , d be its distinct embeddings in C, and let k1, . . . , kd ∈ Z
be such that for all x ∈ F ,

∏d
1 σi(x)ki ∈ Q. Then all the ki’s are equal.

Proof. Assume by contradiction that not all the ki’s are equal. Without
loss of generality we may assume that k1 is the minimal one and that
k1 < k2 say. Since the norm map N(x) =

∏
σi(x) has its values in Q,

we may divide through by N(x)k1 to assume that k1 = 0 < k2 and all
the other ki’s are non-negative. Choose a basis α1, . . . , αd of F over Q,
and denote by ϕ the polynomial

(X1, . . . , Xd) 7→
d∏
i=1

σi

(∑
j

αjXj

)ki

,

which we can simplify as

ϕ( ~X) =
d∏
i=1

Li( ~X)ki , where Li( ~X)
def
=
∑
j

σi(αj)Xj.

The Li are linearly independent linear functionals. Thus the zero set of
ϕ is the union of the kernels of those Li for which ki 6= 0; in particular
ϕ is identically zero on ker(L2) but not on ker(L1).

Now let σ : C → C be a field automorphism such that σ1 = σ ◦ σ2.
Then for each ~X ∈ Qd we have ϕ(X) ∈ Q, hence σ ◦ ϕ( ~X) = ϕ( ~X),
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and since Qd is Zariski dense in Cd, this implies that σ ◦ ϕ and ϕ are
identical as polynomial maps. On the other hand σi 7→ σ ◦ σi is a
permutation σi 7→ σπ(i) with π(2) = 1. This means that ϕ(X) can also

be written as
∏d

1 Lπ(i)(X)ki , and so ϕ is identically zero on ker(L1) —
a contradiction. �

Proof of Theorem 4.5. The fact that B is isomorphic to a direct sum
of number fields is a consequence of the Artin-Wedderburn Theorem
and follows from the fact that it is a finite dimensional semisimple Q-
algebra (see also [T, Prop. 3.1]). So we have an abstract isomorphism
ϕ :

⊕r
j=1 Fj → B, where the Fj’s are number fields, and for each i,

consider the restriction of pi to B, which we continue to denote by pi.
Since the diagonal embedding of Q as scalar matrices is a subalgebra
of B, each pi is non-zero. For each j, let 1j denote the image of 1 ∈ Fj
in B. Then for j 6= j′ we have 1j · 1j′ = 0. Since R has no zero-
divisors, for each i there is a unique j such that pi(1j) 6= 0. This
implies that pi ◦ϕ|Fj

: Fj → R is a non-zero map that respects addition
and multiplication. It follows that it is a real field embedding.

To prove assertions (1),(2) it remains to show that for each j, and
each field embedding σ : Fj → C, the number of indices i for which
σ = pi ◦ϕ is a nonzero number independent of σ. To this end, for each
x ∈ Fj let

ψ(x)
def
= ϕ(x) +

∑
j′ 6=j

1j′ ∈ B ⊂ AΛ. (11)

This is a diagonal matrix whose i-th entry is 1 if pi ◦ ϕ|Fj
is zero, and

is pi ◦ ϕ(x) otherwise. In particular, detψ(x) is the product of the
numbers pi ◦ ϕ(x), taken over the indices i for which pi ◦ ϕ|Fj

is not
zero, and is a rational number, since VΛ — on which ψ(x) acts — is a
Q-vector space. So the claim follows from Lemma 4.7.

�

4.3. Recognizing intermediate lattices. We are now in a position
to prove the main result of this section.

Theorem 4.8. Let Λ ∈ Ln, let P be a partition, and let H = H(P), Z =
Z(P) be the corresponding groups. The following are equivalent:

(1) HΛ is closed in Ln.
(2) H is defined over Q with respect to the Q-structure induced by

Λ.
(3) Z is defined over Q with respect to the Q-structure induced by

Λ.
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(4) dimQAΛ(P) = |P| (that is, P is an algebra partition for Λ, by
Corollary 4.6).

Moreover, the orbit HΛ is of finite volume if and only if the associated
algebra AΛ(P) is a field of degree |P| over Q.

Proof of the first part of Theorem 4.8. Recall the notation of Proposi-
tion 3.4: Z = Z(P), S = S(P), HΛ = StabH(Λ), H0 = Zcl(HΛ), H1 =
H◦0 , where Zcl stands for Zariski closure. Throughout the proof we
will only refer to the Q-structure induced by Λ.
(1) =⇒ (3): As we saw in the proof of Proposition 3.4, H0 is a Q-
algebraic group, contains H1 as a finite-index subgroup, and moreover
S ⊂ H1 = Za · S ⊂ H and so H0 is reductive. Let G1 denote the
centralizer of H1 in G, which is again a reductive Q-algebraic group
containing Z. By [Rag, Proposition 10.15] this implies that the orbit
G1Λ is closed and hence can be viewed as the quotient of a reductive
Q-group by its integral points. We now claim that Z ⊂ G1 is a maximal
R-diagonalizable group and that ZΛ is a closed orbit. Assuming this,
applying [TW, Theorem 1.1], we find that Z is a Q-subgroup of G1,
and hence a Q-subgroup of G. Thus the claim implies (3).

From the definitions Z = A ∩ G1. As G1 is normalized by A we
deduce that Z is a maximal R-diagonalizable subgroup of G1. Since
both orbits HΛ, G1Λ are closed, by [Sh, Lemma 2.2] so is (H ∩ G1)Λ
and since Z is of finite index in H ∩G1, ZΛ is closed as well.

(3) =⇒ (2): As H is the connected component of the identity in
the centralizer of Z in G, if Z is a Q-algebraic group, so is H.

(2) =⇒ (1): Since H is reductive and defined over Q, it follows
from [Rag, Proposition 10.15] that HΛ is closed in Ln.

(4) =⇒ (3): It follows from Proposition 4.3 that if dimQAΛ(P) =
|P| then D(P) is defined over Q. As Z is of finite index in D(P) ∩ G
we conclude that Z is defined over Q.

(3) =⇒ (4): If Z is defined over Q, it contains a Zariski dense subset
of Λ-rational matrices. These are by definition elements of AΛ(P) so
we conclude that the dimension of the real vector space Zcl(AΛ(P)) is
at least the dimension of Z, which is |P| − 1. On the other hand, the
line of scalar matrices is always in this space (regardless of Λ) and so
the dimension is |P| as desired. �

In order to complete the proof of Theorem 4.8 we will need the fol-
lowing Proposition which relates the structure of AΛ with the structure
of the stabilizer of Λ in Z(P).

Proposition 4.9. Let Λ ∈ Ln, P a partition, and Z = Z(P). Let
F1, . . . , Fr and ϕ be as in Theorem 4.5 applied to B = AΛ(P). Then
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the group

ZΛ
def
= {a ∈ Z : aΛ = Λ}

is contained as a finite index subgroup in ϕ
(∏r

1O
×
j

)
, where O×j is the

(multiplicative) group of units of the ring of integers of Fj.

Proof. We first prove the inclusion ZΛ ⊂ ϕ
(∏r

1O
×
j

)
. Suppose a ∈

ZΛ ⊂ AΛ. In light of Theorem 4.5 there are xj ∈ Fj such that for each
i ∈ Ij,k, pi(a) = σk(xj), where the σk are the distinct field embeddings
of Fj. We need to show that each xj is a unit in the ring of integers of Fj.
Let M be a matrix representing the action of a, with respect to a basis
of Rn which generates Λ. Since a preserves Λ, M has integral entries,
and has xj as an eigenvalue. Thus xj is a root of the characteristic
polynomial of M which is a monic polynomial over the integers, and so
is an algebraic integer. As the same argument applies to a−1, x−1

j ,M−1

we conclude that xj is a unit.
We now show that ZΛ is of finite index in this inclusion. For a

fixed j, let d = dj
def
= deg(Fj/Q). By Dirichlet’s theorem, O×j contains

d−1 multiplicatively independent elements α1, . . . , αd−1, so it suffices to
show that a finite power of eachMi fixes Λ, whereMi = ψ(αi) ∈ AΛ(P),
where ψ is as in (11) above.

To this end, fix i and write α = αi, M = Mi, and note that by (11)
and Theorem 4.5 the characteristic polynomial pM(X) of M is of the
form

pM(X) = [mα(X)]b1 [X − 1]b2 ,

where mα(X) denotes the minimal polynomial of α and b1, b2 are non-
negative integers. In particular, pM(X) has coefficients in Z and degree

n. This implies that the additive group Λ̃ generated by
⋃n−1
k=0 M

kΛ is
M -invariant. Representing M with respect to a basis of VΛ contained

in Λ, we see that M has rational coefficients, and in particular Λ̃ is

discrete, and therefore is a lattice in Rn. Since Λ̃ contains Λ, it must
contain it as a subgroup of finite index, and since detM = ±1, the

index is preserved by the action of M . Since Λ̃ contains only finitely
many subgroups of a given index, there is a power of M preserving Λ,
as required. �

The following Corollary verifies the last statement of Theorem 4.8.

Corollary 4.10. Let HΛ be a closed orbit of the block group H =
H(P) and let Z = Zs · Za be the decomposition of Z = Z(P) given in
Proposition 3.4. Then, the number of summands in the decomposition
of the associated algebra as a direct sum of number fields AΛ(P) ∼= ⊕r1Fj
satisfies dimZs = r − 1.



ON THE MORDELL-GRUBER SPECTRUM 21

In particular, the following are equivalent:

(i) HΛ is of finite volume.
(ii) AΛ(P) is a field.
(iii) ZΛ is compact.

Proof. Denote deg(Fj/Q) = dj. By the part of Theorem 4.8 already
established, dimZ = dimZs + dimZa = |P| − 1 =

∑r
j=1 dj − 1. By

combining Proposition 4.9 and part (2) of Remark 3.7 we conclude
that dimZa =

∑r
j=1(dj − 1) =

∑r
j=1 dj − r. Combining these two

equalities we conclude that r = dim(Zs)− 1 as desired.
Finally, by Proposition 3.4 we know that the closed orbit HΛ is of

finite volume if and only if dimZs = 0, which, by the above reason-
ing, implies the equivalence of (i) and (ii) and shows that they imply
(iii). For the reverse implication (iii) =⇒ (i), note that if ZΛ is com-
pact then by Proposition 3.4(2), Zs must be trivial and therefore by
Proposition 3.4(1), HΛ is of finite volume.

�

5. Consequences and examples

Proposition 3.2 and Theorem 4.8 furnish a link between the alge-
braic properties of intermediate lattices and the structure of their or-
bits under block groups. This sheds light on all possible A-invariant
homogeneous spaces. In this section we collect results in this direction,
and conclude with some examples.

Corollary 5.1. For any lattice Λ ∈ Ln, the map B 7→ H(PB) is a bijec-
tive correspondence between the subalgebras of AΛ, and the block groups
H for which HΛ is a closed orbit. Under this bijection subfields of AΛ

correspond to finite volume orbits. The bijection is order-reversing for
the orderings of the corresponding sets by inclusion.

Proof. This follows from Theorem 4.2 and Corollary 4.6. �

In Corollary 5.1, the trivial algebra Q corresponds to the block group
H = G (the group with one block). Recalling Definition 1.5, we obtain:

Corollary 5.2. A lattice Λ ∈ Ln is intermediate (resp. intermediate of
finite volume type) if and only if the associated algebra AΛ is nontrivial
(resp. contains a subfield other than Q).

�
In the other extreme, for A = H(P0) we have the following Corollary

which explains the terminology in Definition 1.6.
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Corollary 5.3. A lattice Λ ∈ Ln is an algebra lattice (resp. a number
field lattice) if and only if the associated algebra is n-dimensional over
Q (resp. is a field of degree n over Q).

The following Corollary recovers a result from [LW]. Note that by
Theorem 4.5 any field partition must be an equiblock partition; that
is, a partition into blocks of equal size.

Corollary 5.4 (See §6 in [LW]). If H = H(P) has a finite volume
orbit in Ln then H is necessarily an equiblock group.

�
We now summarize the relation between subalgebras and partitions.

Given a lattice Λ we have defined two maps

{partitions P}

P7→AΛ(P)

%%

{subalgebras of AΛ}

PB←B

ee
(12)

The image of the RHS in the LHS of (12) is the collection of algebra par-
titions which are those of dynamical interest, in light of Corollary 5.1.

Proposition 5.5. Let Λ be a lattice.

(1) Both maps in (12) respect the partial orderings of refinement
on the LHS and inclusion on the RHS.

(2) For any subalgebra B ⊂ AΛ we have that B = AΛ(PB); that is,
going from the RHS to the LHS and back in (12) is the identity
map.

(3) In the other direction, for any partition P, if B = AΛ(P) then
PB is the finest algebra partition which is coarser than P.

We will not be using Proposition 5.5 and its proof is left to the
reader. �

5.1. Density properties. It is a well-known result of Prasad and
Raghunathan [PrRa], based on earlier work of Mostow, that the set
of compact A-orbits is dense in any fixed finite volume orbit HΛ of a
block group H. Our results imply the following related result:

Proposition 5.6. Let H1  H2 be two equiblock subgroups of G and
let Λ0 be an intermediate lattice such that both orbits HiΛ0 are homo-
geneous and of finite volume. Let Pi denote the partition satisfying
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Hi = H(Pi) and let K = AΛ0(P1) be the subfield of the associated
algebra to Λ0 corresponding to P1 by Corollary 5.1. Then the set

{Λ ∈ H2Λ0 : H1Λ is a homogeneous subspace and K ∼= AΛ(PK)}
is dense in H2Λ0.

Proof. Let Z = Z(P1). By Corollary 4.10, ZΛ0 is compact. Let Γ′ be
the subgroup of H2 fixing Λ0, which is an arithmetic lattice in H2. Let
H2(Q) denote the elements q ∈ H2 which are rational with respect to
the corresponding Q-structure, a dense subgroup of H2 (see [LW, Prop.
3.4] for more details). For each q ∈ H2(Q), qΓ′q−1 is commensurable
with Γ′, so the orbits ZΛ0 and ZqΛ0 share a common finite cover.
This implies that each ZqΛ0 is also compact. Another application of
Corollary 4.10 shows that H1qΛ0 is also a homogeneous subset of finite
volume. Moreover, for each q ∈ H2(Q), VΛ0 = VqΛ0 . This implies that
AΛ0(PK) = AqΛ0(PK). So the set of lattices {qΛ0 : q ∈ H2(Q)} has the
desired properties. �

5.2. Constructing intermediate lattices. Let B = ⊕r1Fj be an n-
dimensional Q-algebra where the Fj’s are totally real number fields of
degrees dj over Q respectively; so dimQB =

∑r
1 dj = n. Let σi : B →

R, i = 1 . . . n be some enumeration of the n distinct homomorphisms
of B into the reals. More concretely, if we denote by τjk : Fj → R, k =
1, . . . , dj the various field embeddings of Fj into the reals, and view
each τjk as a homomorphism from B to R, then σ1, . . . , σn is some
enumeration of the τjk, j = 1, . . . , r, k = 1, . . . , dj. Let v : B → Rn be
the map

α 7→ v(α)
def
= (σ1(α), . . . , σn(α)) ∈ Rn. (13)

Let L be an additive subgroup of B of rank n. As B ⊗Q R = Rn, the
group {v(α) : α ∈ L} is a lattice in Rn. Let

ΛL
def
= cL {v(α) : α ∈ L}, (14)

where cL is chosen so that ΛL has covolume 1 and so belongs to Ln.
Lattices arising in this way have been studied by many authors (mainly
in the case where B is a field), see e.g. [GL, Chap. 1] or [PR, p. 54].
We refer to below to lattices of the form ΛL as lattices arising via (14).

The following proposition gives an explicit construction of all algebra
lattices.

Proposition 5.7. (1) Let ΛL be a lattice arising via (14) with L
a rank-n subgroup of the n-dimensional Q-algebra B as above.
Then the associated algebra AΛL

is isomorphic to B. In partic-
ular, the orbit AΛL is closed and so consists of algebra lattices.
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(2) If Λ is an algebra lattice, then there is a lattice ΛL arising
via (14) with Λ ∈ AΛL.

Proof. (1) The map v : B → Rn in (13) is Q-linear and also respects
multiplication in the sense that

v(α · β) = diag(σ1(α), . . . , σn(α)) · v(β).

This means that VΛL
= cLv(B), and moreover that the map α 7→

diag(σ1(α), . . . , σn(α)) is an embedding of B into AΛL
. As B is n-

dimensional and AΛL
is at most n-dimensional, the above map is an

isomorphism between B and AΛL
. By Corollary 5.3, ΛL is an algebra

lattice as desired.
(2) Let B = AΛ. By Corollary 5.3, B is n-dimensional. Choose a
vector w ∈ Λ all of whose coordinates are positive and consider the
map ψ : B → VΛ given by a 7→ a · w. This map is clearly Q-linear and
injective. As VΛ is n-dimensional as well, it must be an isomorphism of

Q-vector spaces. Let L
def
= ψ−1(Λ) ⊂ B. By Theorem 4.5, by projecting

B to the diagonal coordinates we obtain an ordering of all the various
homomorphisms of B into R. This way we obtain a map v : B → Rn
as in (13), and the lattice ΛL which arises via (14) satisfies ΛL = a ·Λ.
Here a is the diagonal matrix obtained by rescaling the diagonal matrix
diag(wi) to have determinant 1. Indeed a ∈ A as we chose w so that
all of its coordinates are positive. �

The following Corollary is a refined version of Proposition 3.4 (when
applied to a closedA-orbit) in conjunction with the concrete description
of algebra lattices given in Proposition 5.7 above.

Corollary 5.8. Suppose Λ is an algebra lattice. Then there is a de-
composition A = Ts × Ta and a direct sum decomposition Rn =

⊕r
1 Vj

such that the following hold:

(i) Each Vj is spanned by some of the standard basis vectors.
(ii) Ta is the group of diagonal (with respect to the standard basis)

matrices whose restriction to each Vj has determinant 1.
(iii) Ts is the group of linear transformations which act on each Vj by

a homothety, preserving Lebesgue measure on Rn. In particular
dimTs = r − 1.

(iv) Tsx is divergent and Tax is compact.

(v) Setting Λj
def
= Vj ∩ Λ, each Λj is a lattice in Vj, so that

⊕
Λj is

of finite index in Λ.

Proof. Since our required conclusions are invariant when replacing Λ
with aΛ for a ∈ A, by Proposition 5.7 we can assume that Λ = ΛL
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arises via (14). With the notation above, we set Vj to be the span of
the standard basis vectors ei for which σi = τjk for k ∈ {1, . . . , dj},
so (i) holds. Let P = P0, so that A = H(P) = Z(P). Let Ta be the
Zarizki closure of the stabilizer AΛ. By Proposition 4.9 Ta is contained

in the group T̃ of diagonal matrices whose restriction to each Vi has
determinant one. A dimension count using the Dirichlet unit theorem

now implies that Ta = T̃ , establishing (ii). Recalling Proposition 3.4
(and its proof) we have that TaΛ is compact and that if Ts is any choice
of a direct complement of Ta in A, then TsΛ is divergent. Defining Ts
by (iii), one obtains (iv). Since L generates B over Q, and since each
Fj is the pre-image of Vj under the map (13) and is a Q-subspace of
B, (v) holds. �

The following Proposition gives an explicit construction of all homo-
geneous A-invariant spaces in Ln (or equivalently, of all intermediate
lattices). It shows that each such homogeneous space H(P)Λ contains
an algebra lattice ΛL arising via (14). Moreover, by Corollary 5.1,
the partition P must be the algebra partition that corresponds to the
subalgebra of AΛL

that we associate to the homogeneous space.

Proposition 5.9. Let HΛ be a closed orbit for the group H = H(P).
Then there exists a lattice ΛL arising via (14) such that Λ ∈ HΛL. If
HΛ is of finite volume then ΛL can be taken to be a number field lattice.

Proof. By Proposition 3.4 (and its notation), we may present H as a
direct product H = Zs · Za · S. Since S is a semisimple group defined
over Q, with respect to the Q-structure induced by Λ, Proposition 2.4

implies that the orbit SΛ is of finite volume. Let A0
def
= S ∩ A. By the

theorem of Prasad and Raghunathan [PrRa] the finite volume orbit
SΛ contains a lattice Λ′ with a compact A0-orbit. By Remark 3.7(2)
we have that ZaΛ

′ is compact as well and since Za commutes with
A0, the orbit ZaA0Λ′ is compact. Applying part (3) of Proposition 3.4
we deduce that the orbit ZsZaA0Λ′ is closed but as A = ZsZaA0 we
conclude that Λ′ is an algebra lattice. Similarly, when HΛ is of finite
volume then AΛ′ is compact so Λ′ is a number field lattice. By Propo-
sition 5.7 we conclude that we may assume without loss of generality
that Λ′ = ΛL is a lattice arising via (14). �

5.3. Indecomposable lattices.

Proposition 5.10. Let µ be a finite A-invariant homogeneous mea-

sure. Then µ-a.e. Λ is indecomposable. In particular κµ ∈ M̂Gn

(where κµ is as in (5)).
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Proof. A decomposable lattice Λ = Λ1 ⊕ Λ2 has nonzero vectors with
zero entries (namely those nonzero vectors in each Λi, as embedded in
Λ). If the set of decomposable lattices had positive µ-measure, then
for some index i0, there would be a set of positive measure of lattices
Λ containing a vector whose i0-th coordinate vanishes. Assume to
simplify notation that i0 = 1, then by Proposition 2.2, such lattices
have a divergent trajectory under the one parameter subgroup at =
diag(e(n−1)t, e−t, . . . , e−t) as t → ∞. This contradicts the Poincaré
recurrence theorem, which asserts that with respect to an invariant
probability measure for an R-action, almost every point x returns to
any neighborhood of x along an unbounded infinite subsequence. �

5.4. Examples.

Example 5.11. Let Λ = Zn, that is, Λ arises via (14) from the n-
dimensional Q-algebra B = Qn and so AΛ

∼= Qn. Moreover, for any
partition P , the subalgebraAΛ(P) consists of all diagonal matrices with
rational diagonal entries that are constant in each block of P and so
is a |P|-dimensional subalgebra of AΛ. By Corollary 4.6 any partition
P is an algebra partition; hence by Corollary 5.1, the orbit H(P)Λ is
closed for any block group H(P). Moreover, as Qn does not have any
subfields other than Q, all orbits H(P)Λ are of infinite volume, apart
from the orbit Ln which is obtained by choosing the trivial partition
that contains only one block, corresponding to the subfield Q.

Example 5.12. Let B = F1⊕F2 be a 4-dimensional Q-algebra where
F1 = F2 = Q(

√
2). Denote by x 7→ x′ the nontrivial automorphism of

Q(
√

2). Let L = OF1⊕OF2 and define Λ = ΛL to be the lattice defined
by (14) where v(x, y) = (x, x′, y, y′). Then

ΛL = cL{(x, x′, y, y′) : x, y ∈ OQ(
√

2)}

is an algebra lattice with F1 ⊕ F2
∼= AΛ. The isomorphism is given by

the map (x, y) 7→ diag(x, x′, y, y′). It is not hard to write down a table
of all subalgebras of AΛ and work out the corresponding algebra parti-
tions. This gives us a classification of all closed orbits of block groups
through Λ. For example if we take B1 = {diag(x, x, y, y) : x, y ∈ Q} ∼=
Q ⊕ Q we obtain the algebra partition P1 = {{1, 2}, {3, 4}} for which
(by Corollary 5.1) the orbit H(P1)Λ is closed but of infinite volume
because Q ⊕ Q is not a field. On the other hand, if we take B2 =
{diag(x, x′, x, x′) : x ∈ Q(

√
2)}, then we obtain the algebra partition

P2 = {{1, 3}, {2, 4}} for which H(P2)Λ is a closed orbit of finite vol-
ume as B2

∼= Q(
√

2) is a field.
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6. Strict inequalities among the κµ

We begin with a definition. Let ϕ : ⊕r2j=1F
(2)
j ↪→ ⊕r1j=1F

(1)
j be an

embedding of Q-algebras. We say that ϕ is essential if the image of

ϕ projects onto F
(1)
j for any 1 ≤ j ≤ r1. Otherwise we refer to ϕ as

non-essential.
We can now state the main result of this section, which is one of the

main results of this paper.

Theorem 6.1. Let µi, i = 1, 2 be two homogeneous A-invariant mea-
sures such that supp(µ1)  supp(µ2). Let Hi = H(Pi) and Λ ∈ Ln be
such that HiΛ = supp(µi). If the containment AΛ(P2) ⊂ AΛ(P1) is
non-essential then κµ1 < κµ2.

Deduction of Theorem 1.4. If µ1 is a finite measure then by Corol-
lary 5.1 the associated algebra to the orbit that supports µ1 is a field. It
follows that the associated algebra to the orbit that supports µ2 must
be a field as well (because it is a subalgebra of a field) and therefore
µ2 must be a finite measure as well by another application of Corol-
lary 5.1. By Lemma 3.3, since H1Λ = supp(µ1) ⊂ supp(µ2) = H2Λ,
we have H1 ⊂ H2 and since the containment between the orbits is
strict, we have H1  H2. Therefore the containment of the associated
algebras is strict and so the containment is non-essential and Theo-
rem 6.1 applies. We therefore conclude that if µ1 is a finite measure,
then κµ1 < κµ2 and Theorem 1.4 follows. �

Example 6.2. Continuing with Example 5.11, note that when we con-
sider the inclusion of closed orbits AZn ⊂ GZn, the containment of the
associated algebras Q ⊂ ⊕n1Q is essential and the conclusion of Theo-
rem 6.1 fails to hold as both of the generic constants attached to these
orbits are equal to 1.

Example 6.3. Let Λ be the lattice constructed in Example 5.12. In
the notation of that example we know that the orbits AΛ, H(P1)Λ,
H(P2)Λ, GΛ are all closed and their associated algebras are isomor-
phic respectively to Q(

√
2)⊕Q(

√
2), Q⊕Q, Q(

√
2), and Q. We denote

the generic values attached to these closed orbits by κ0, κ1, κ2, κ3 re-
spectively, so that κ3 = κµLn

= 1. Because the inclusions Q ↪→ Q(
√

2),

Q⊕Q ↪→ Q(
√

2)⊕Q(
√

2) are non-essential we deduce by Theorem 6.1
that κ2 < κ3, κ0 < κ1. On the other hand, the inclusions Q ↪→ Q⊕Q,
Q(
√

2) ↪→ Q(
√

2) ⊕ Q(
√

2) are essential and so Theorem 6.1 does not
tell us that the inequalities κ1 ≤ κ3, κ0 ≤ κ2 are strict. Indeed, it is
not hard to see that κ1 = 1 because the lattice Z4 belongs to the orbit
H(P1)Λ (as Λ is the direct sum of two 2-dimensional lattices and the
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2 by 2 blocks of H(P1) act on each of the summands separately). We
do not know whether κ0 < κ2. In fact we do not know an example of
a strict inequality between the κ-values when the containment of the
associated algebras is essential.

The proof of Theorem 6.1 requires some preparations. Once again

let ϕ : ⊕r2j=1F
(2)
j ↪→ ⊕r1j=1F

(1)
j be an embedding of Q-algebras. We say

that ϕ is aligned if r1 = r2.

Proposition 6.4. Let HΛ be a closed orbit of H = H(P) and let
ΛL ∈ HΛ be the algebra lattice constructed in Proposition 5.9. Then
the inclusion AΛL

(P) ⊂ AΛL
is aligned.

Proof. As both orbits HΛL and AΛL are closed, we may apply Propo-
sition 3.4 to both of them and obtain decompositions of Z(P) and A
respectively. Following the proof of Proposition 5.9 we see that the split
part in these decompositions may be chosen to be the same; indeed, in
the notation of Proposition 5.9, if Z = Zs ·Za is the decomposition for
Z = Z(P), then we saw that A = Zs · (Za · (A ∩ S)) and that ΛL was
chosen so that Za(A ∩ S)ΛL is compact. It now follows from Corol-
lary 4.10 that if we present the associated algebras to the orbits HΛL,

AΛL as AΛL
= ⊕r11 F

(1)
j , AΛL

(P) ∼= ⊕r21 F
(2)
j , then r1 = r2. �

6.1. The Kernel Lemma. We will need some more notation.

Definition 6.5. (1) Given a block group H = H(P) and a closed
orbit HΛ with associated algebra AΛ(P) ∼= ⊕rj=1Fj such that

deg(Fj/Q) = dj, we present P as in (10), P = trj=1 t
dj
k=1 Ij,k.

Let

Ĩj
def
= ∪djk=1 Ijk and P̃ = trj=1Ĩj;

that is, the j-th block of P̃ is obtained by grouping the diagonal
coordinates that correspond to embeddings of Fj.

(2) Given a subset Q ⊂ {1, . . . , n}, we denote by πQ : Rn → R|Q|
the projection to the coordinates of the subset Q.

Lemma 6.6 (Kernel Lemma). Let HΛ ⊂ Ln be a closed orbit of the
block group H = H(P). Let Q1, Q2 be two blocks of P that are con-

tained in the same block of the partition P̃ from Definition 6.5. Then,
there is an automorphism ρ of C such that for any collection of vectors
v1, . . . , vt ∈ Λ, we have the following connection between kernels of the
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n× t matrices whose columns are the πQj
(vi)’s

ker

 | |
πQ1(v1) · · · πQ1(vt)
| |

 = ρ

ker

 | |
πQ2(v1) · · · πQ2(vt)
| |

,
(15)

where we let ρ act on Rn coordinate-wise.

Proof. Because of the block structure ofH, the conclusion of the Lemma
is independent of the lattice we choose to consider within the orbit HΛ.
By Proposition 5.9 it is enough to assume that Λ = ΛL is constructed
via (14) for some n-dimensional Q-algebra B and L ⊂ B. By Propo-
sition 5.7 we may assume that B = AΛ. Moreover, by the proof of
Proposition 5.7, the map that sends a diagonal matrix in AΛ to the
vector in Rn whose coordinates are the diagonal entries of the ma-
trix is a linear isomorphism3 between AΛ and VΛ. This means that the
statement of the Lemma translates to a statement about the associated
algebra AΛ.

By Proposition 6.4, the containment AΛ(P) ⊂ AΛ is aligned. We
present AΛ

∼= ⊕rj=1Fj, AΛ(P) ∼= ⊕rj=1Kj and note that the alignment
of the inclusion of the algebras means that we may assume that for
each 1 ≤ j ≤ r the field Fj is an extension of Kj and the inclusion
AΛ(P) ⊂ AΛ is induced from the natural inclusion ⊕r1Kj ⊂ ⊕r1Fj.

By Theorem 4.5, as AΛ is n-dimensional, the diagonal coordinates
(or the coordinates of Rn) are in one to one correspondence with the
various field embeddings of the fields Fj. By the above discussion, the

blocks Ĩj of P̃ are obtained by grouping the coordinates that corre-
spond to each field Fj together. As P is the algebra partition attached
to AΛ(P) (see Definition 4.1 and Corollary 4.6), the blocks of P are

then obtained by further splitting each Ĩj according to the restriction
of the corresponding embedding of Fj to the subfield Kj. That is,
two coordinates that correspond to embeddings of Fj that restrict to
the same embedding of Kj belong to the same block. As the group
of automorphisms of C acts transitively on the equivalence classes of
embeddings of Fj with respect to the above equivalence relation, we

deduce that if Q1, Q2 are two blocks of P that are contained in Ĩj, then
there is an automorphism of C such that for each v ∈ VΛ = AΛ we have
that πQ1(v) = ρ(πQ2(v)). From here (15) readily follows.

�

6.2. Strict inequalities for κ values.

3The attentive reader will notice that VΛ should be replaced with its dilation.
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Lemma 6.7. Let H1Λ ⊂ H2Λ be a containment of two closed orbits
where Hi = H(Pi), i = 1, 2. If the containment AΛ(P2) ⊂ AΛ(P1)
is non-essential, then there is a block of P2 that contains two distinct

blocks of P1 that are contained in the same block of P̃1.

Lemma 6.7 together with the following Theorem implies the validity
of Theorem 6.1. We postpone the proof of Lemma 6.7 to the end of
this section.

Theorem 6.8. Let H1Λ ⊂ H2Λ be a containment of two closed orbits
where Hi = H(Pi), i = 1, 2. Suppose that there is a block of P2 that
contains two distinct blocks of P1 that are contained in the same block

of P̃1. Then κ1 < κ2.

Proof. Assume by way of contradiction that κ1 = κ2. Without loss of
generality we may assume that Λ = Λmax is a lattice for which the con-
clusions of Theorem 3.1 are satisfied for the A-invariant set H1Λ; that
is, we assume that κ(Λ) = max {κ(Λ′) : Λ′ ∈ H1Λ} and furthermore,
that the symmetric cube C of volume 2nκ1 is admissible for Λ. From
our assumption we deduce that also κ(Λ) = max {κ(Λ′) : Λ′ ∈ H2Λ}.
In practice, the property of Λ that will be of importance to us is that
one cannot act on Λ with some h ∈ H2 in such a way that a symmetric
box of bigger volume will be admissible for hΛ.

For 1 ≤ i ≤ n we refer to the face of C that intersects the positive
i-th axis as the i-th face of C and denote it by Fi. By symmetry there
will be no need to consider the opposite faces. We divide the rest of
the argument into steps.

Step 1. We first observe that for each 1 ≤ i ≤ n the relative interior of
Fi intersects Λ nontrivially. If not, we could have chosen an admissible
symmetric box for Λ which strictly contains C and in particular, is of

greater volume. We refer to the set L
def
= Λ ∩ ∂C as the set of locking

points and denote by Li, 1 ≤ i ≤ n the set of points in L that belong
to the relative interior of Fi.
Step 2. Recall that for Q ⊂ {1, . . . , n}, πQ : Rn → R|Q| is the projec-
tion to the coordinates of Q. We observe that for each block Q of the
partition P2 and for each i0 ∈ Q,

0 ∈ conv{πQr{i0}(v) : v ∈ Li0}. (16)

In other words, if we restrict attention to the coordinates of the block
Q, then the point of intersection of Fi0 with the i0-th axis belongs to
the convex hull of locking points for the i0-th face.

To prove (16), suppose to the contrary that 0 does not belong to
conv{πQr{i0}(v) : v ∈ Li0}. Then there is a linear functional f : R|Q|−1 →
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R which is strictly positive on {πQr{i0}(v) : v ∈ Li0}. Define a one-
parameter unipotent subgroup {ut} of G by the formula

ut(v) = v + tf(πQr{i0}(v))ei0 , (17)

where e1, . . . , en is the standard basis of Rn. Since Q is a block of the
partition defining H2, we have {ut} ⊂ H2. It follows from the definition
of ut and the positivity of f ◦πQr{i0} on Li0 that for small values of t > 0
the cube C is admissible for utΛ. Furthermore, utΛ does not contain
points in the relative interior of Fi0 . Thus we may find a symmetric
box that strictly contains C and is admissible for utΛ, contradicting
our assumption that κ attains its maximal value on H2Λ at Λ.

Step 3. Now we apply the Kernel Lemma 6.6. Denote by Q a block of
P2 that contains two distinct blocks Q1, Q2 of P1 such that both Qi are

contained in the same block of P̃1, the existence of which is assumed
in the statement. Let i0 ∈ Q1.

Let δ > 0 be such that δei0 is the point of intersection of Fi0
with the i0-th axis. Because all the points of Fi0 share the same
i0-th coordinate, namely δ, we deduce from (16) that πQ(δei0) is in
the convex hull of πQ(Li0). Choose v1, . . . , vt in Li0 and a coeffi-

cients vector ~λ = (λ1, . . . , λt) with λi ≥ 0 and
∑t

1 λi = 1 so that∑
λiπQ(vi) = πQ(δei0). In particular, as i0 /∈ Q2, the vector ~λ belongs

to the kernel of the n × t matrix whose columns are the πQ2(vi)’s.
Applying the Kernel Lemma 6.6 we deduce that there is an automor-

phism ρ of C so that ρ(~λ) belongs to the kernel of the corresponding
matrix with columns πQ1(vi). As ρ is an automorphism we deduce that∑t

1 ρ(λi) = ρ(1) = 1. Looking at the i0 coordinate we deduce that

0 =
∑t

1 ρ(λi)δ = δ, a contradiction.
�

Proof of Lemma 6.7. The associated algebras AΛ(P1), AΛ(P2) are iso-

morphic to direct sums of number fields. Suppose AΛ(Pi) ∼= ⊕rij=1F
(i)
j .

Then the inclusion AΛ(P2) ⊂ AΛ(P1) induces an embedding

ϕ : ⊕r2j=1F
(2)
j ↪→ ⊕r1j=1F

(1)
j .

For such an embedding, there exists a partition {1, . . . , r1} =
⊔r2
j=1Qj

such that for each 1 ≤ j ≤ r2 there is an embedding ϕj : F
(2)
j ↪→

⊕i∈Qj
F

(1)
i so that ϕ takes the following form

ϕ((xj)
r2
j=1) = (ϕ1(x1)), . . . , ϕr2(xr2)) ∈

(
⊕i∈Q1F

(1)
i

)
⊕· · ·⊕

(
⊕i∈Qr2

F
(1)
i

)
.
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Our assumption that the embedding ϕ is non-essential simply means
that there exists some 1 ≤ j0 ≤ r2 and i0 ∈ Qj0 such that

deg
(
F

(1)
i0
/Q
)
> deg

(
F

(2)
j0
/Q
)
. (18)

Recall that by Theorem 4.5 the blocks of the partition P2 correspond to

the various embeddings of the F
(2)
j . Choose a block Q that corresponds

to one of the embeddings of F
(2)
j0

.
This block splits into several blocks of the finer partition P1 and this

splitting is done in two steps. First, it splits into blocks Si, i ∈ Qj0 ,

that correspond to the embedding ϕj0 : F
(2)
j0

↪→ ⊕i∈Qj0
F

(1)
i and then

each block Si further splits into deg
(
F

(1)
j0
/Q
)
/ deg

(
F

(2)
i /Q

)
blocks

Si` which are the blocks of P1. Following the definitions we see that for

each fixed i the blocks Si` belong to the same block of P̃1; namely the

one defined by F
(1)
i . Combining this with the inequality (18) concludes

the proof. �

7. Proofs of isolation results

We recall the main dynamical result of [LW], which is the basis of
our proof of isolation results.

Theorem 7.1. Let n ≥ 3, let HΛ be a finite-volume A-invariant ho-
mogeneous subspace of Ln, corresponding via Corollary 5.1 to a subfield
F of the associated algebra AΛ. Assume that AΛ = HΛ and let (Λk) be
a sequence of lattices in LnrHΛ converging to Λ. Then, after passing
to a subsequence of the (Λk), there is a proper subfield K  F such that
the set of accumulation points of the form lim akΛk, ak ∈ A, is equal
to the finite-volume homogeneous space H ′Λ, where H ′ is an equiblock
group associated to K via Corollary 5.1.

In particular, if F has no proper subfields other than Q, then the set
of accumulation points as above is the entire space Ln.

Although the Theorem is not stated in this form in [LW], its state-
ment follows from the proofs of [LW, Theorems 1.1, 1.3]. We include
a proof for completeness. In the interest of brevity, along the way we
will refer the reader to the required definitions of statements from [LW].
See also [ELMV, Theorem 4.8].

Proof. Given a sequence (Λk)k, we denote by F((Λk)k) the set of accu-
mulation points of sequences akΛk with ak ∈ A. In light of the bijection
described in Corollary 5.1, it suffices to prove that there is a subse-
quence (Λ′j) ⊂ (Λk) such that F((Λ′j)j) = H ′Λ is a finite-volume orbit
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where H ′ is an equiblock group containing H as a proper subgroup.
Let x0 ∈ HΛ be such that Ax0 is compact. Since there are only finitely

many equiblock groups H̃ for which H̃x0 is a finite-volume closed or-
bit, we may pass to a subsequence (which we continue to denote by

(Λk)), so that for each of these groups H̃, one of the following three
possibilities occurs:

(i) (Λk)k ⊂ H̃x0.

(ii) H̃x0 6⊂ F((Λk)k).

(iii) H̃x0 ⊂ F((Λk)k)r H̃x0.

From now on we write F = F((Λk)k). The assumption on the sequence

(Λk)k ensures that for H̃ = H, (iii) occurs (regardless of our choice of
subsequence), and in particular Hx0 ⊂ F . We will show that F = H ′x0

is a finite volume orbit of an equiblock group H ′ properly containing
H, and this will imply F = H ′Λ and conclude the proof.

Let H̃ be an equiblock group such that H̃x0 is a finite-volume closed

orbit and (iii) holds, and let z ∈ H̃x0 have a compact A-orbit. By
assumption (passing to a subsequence) there are ak ∈ A such that the

sequence xk = akΛk /∈ H̃z converges to z. Note that for each such
subsequence, F((xk)k) ⊂ F . Let the groups Nij, Uij be defined as in
[LW]. Then each Nij acts ergodically on Az by [LW, Step 6.1]. By
repeating verbatim the proof of [LW, Lemma 4.2], we find that there

exist indices i, j (which may depend on z) such that Uij 6⊂ H̃ and
Uijz ⊂ F . Now by [LW, Steps 4.7, 4.8], using F instead of F , we find

that there are indices i, j (depending only on H̃) such that Uij 6⊂ H̃

and UijH̃x0 ⊂ F .
Let V be a unipotent subgroup of G of maximal possible dimension,

which is normalized by A and such that V x0 ⊂ F . Using Ratner’s
theorem, V x0 = H1x0 and by [LW, Proof of Theorem 1.1], H ′ = AH1

is an equiblock group and H ′x0 ⊂ F is closed and of finite volume.
Assume by contradiction that (iii) holds for H ′. Then letting Uij be
such that UijH

′x0 ⊂ F , Uij 6⊂ H ′ and arguing as in [LW, Step 4.9] we
obtain a contradiction to the maximality of V . This implies that H ′

satisfies (i), and this in turn implies F = H ′x0. Since Hx0 ⊂ F and
the groups H,H ′ are connected, we have H ⊂ H ′, and since H satisfies
(iii), this containment is proper. �

7.1. Proofs.
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Proof of Theorem 1.9. For each subfield F1 ⊂ F , by Corollary 5.1 there
is a corresponding homogeneous subset HΛ, equipped with a homoge-
neous measure µF1 , and by Theorem 3.1, a corresponding κµF1

. Let

κ′
def
= min{κµF1

: F1  F a subfield}.

Note that if F has no proper subfields, the only possible F1 is the field
Q, and in this case κ′ = 1. Also note that by Theorem 1.4, κ′ > κ(Λ).

We now claim that for any sequence Λk → Λ, such that Λk /∈ AΛ,
we have lim infk κ(Λk) ≥ κ′. Take a subsequence along which κ(Λk)
converges. Applying Theorem 7.1 in the special case H = A, after
passing to a further subsequence we find that there is a subfield F1  F
such that any lattice in H ′Λ is an accumulation point of a sequence
of the form akΛk. Here H ′ is the equiblock group corresponding to
F1 under Corollary 5.1. In particular, we can choose Λmax, a lattice
realizing the maximal value of κ on the homogeneous subset H ′Λ as in
Theorem 3.1, as a limit point of akΛk. In view of Proposition 2.1,

κ′ ≤ κ(Λmax) ≤ limκ(akΛk) = limκ(Λk).

Now to prove local isolation, note that Definition 1.8 is satisfied with

ε0
def
= κ′−κ(Λ). This also implies strong isolation when F has no proper

subfields. It remains to show that Λ is not strongly isolated when F
does have a proper subfield F ′. Indeed, in this case κ′ < 1 by Theorem
1.4. Letting H ′ denote the block group corresponding to F ′, we find
from Theorem 3.1 that there is a dense collection of lattices Λ′ ∈ H ′Λ,
for which κ(Λ′) = κ′. This means that Λ is not strongly isolated. �

Proof of Corollary 1.11. We first recall that for any n there is a totally
real number field F of degree n without proper subfields. Indeed, by
[KM, Prop. 2], for any n there is a totally real Galois extension K
of Q with Galois group Sn (the full permutation group of {1, . . . , n}).
The subgroup G0

∼= Sn−1 fixing the element 1 is a maximal subgroup
of index n, so by the Galois correspondence, the subfield F of K fixed
by G0 has the required properties.

Now let Λ be a number field lattice in Rn arising from such a field F
via the construction as in (14) of §5.2. By Theorem 1.9, Λ is strongly
isolated, and by Proposition 5.6 (applied to H1 = A,H2 = G), the set
of number field lattices with associated field F is dense in Ln. �

We now give a variant of Definition 1.8. Let Λ ∈ Ln and let H ⊂ G
be a subgroup containing A. Given ε0 > 0, we say that Λ is ε0-isolated
relative to H if for any 0 < ε < ε0 there is a neighborhood U of Λ in
Ln, so that for any Λ′ ∈ U rHΛ, κ(Λ′) > κ(Λ) + ε. We will say that Λ
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is locally isolated relative to H if it is ε0-isolated relative to H for some
ε0 > 0.

With this definition we prove the following result, of which Theorem
1.13 is a special case:

Theorem 7.2. Let µ be a homogeneous A-invariant probability mea-
sure which corresponds to the homogeneous space HΛ0 with A  H  
G. Then for any Λ ∈ HΛ0 for which AΛ = HΛ0 (in particular, for µ
-almost any Λ) the following assertions hold:

(1) Λ is not locally isolated.
(2) Λ is ε0-locally isolated relative to H, for

ε0
def
= min{κν : ν is a homogeneous A-invariant probability

measure with supp(µ) supp(ν) } − κ(Λ).

Since there are only finitely many equiblock groups that contain
H, there are only finitely many measures ν that can appear in the
minimum defining ε0 above. By Theorem 1.4 we see that indeed ε0 > 0.

Proof. Since A  H, (1) is immediate from Theorem 3.1, taking a
sequence of generic elements in HΛ r AΛ tending to Λ. The proof of
assertion (2) is identical to the proof of Theorem 1.9, except that in
applying Theorem 7.1, we use H in place of A. �

Proof of Theorem 1.14. By Proposition 5.9 there are number field lat-
tices in HΛ, and by Proposition 5.6 the collection of number field
lattices in HΛ is dense. Let Λ0 ∈ HΛ be a lattice realizing the
generic value κµ and choose Λk → Λ0 a sequence of number field
lattices from within HΛ. On the one hand, by Theorems 3.1 and
1.4 we know that κ(Λk) < κµ. On the other hand, by Proposition
2.1, lim infk κ(Λk) ≥ κµ. It follows that the sequence κ(Λk) converges
to κµ and after possibly taking a subsequence, we may assume that
κ(Λk) ↗ κµ. Finally, by Proposition 5.10, these values belong to the
reduced Mordell-Gruber spectrum. �

Proof of Theorem 1.16. Given t, let Q  F1  · · ·  Ft be a tower
of totally real fields, and let n = deg(Ft/Q). Let Λ ⊂ Ln be a num-
ber field lattice corresponding to Ft, constructed via (14) for some
rank n subgroup L ⊂ Ft. Then each of the Fi is obtained as AΛ(Pi)
for some partition Pi, and by Corollary 5.1, the corresponding groups

Hi
def
= H(Pi) satisfy A = Ht  Ht−1  · · ·  H1  G. For each

i, let HiΛ be the corresponding finite-volume homogeneous subspace.

Denote SL(VΛ)
def
= G ∩ GL(VΛ), i.e., the set of elements of G which

are rational with respect to the Q-structure induced by Λ. For each
q ∈ SL(VΛ) and each i, the orbit HiqΛ is also a homogeneous subspace,
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since q commensurates StabG(Λ). Let κi(q) denote the generic value
of κ, as in Theorem 3.1, on the homogeneous subspace HiqΛ. We will

show by induction that each κt−i(q) belongs to M̂G
(i)

n .
Suppose first that i = 1. Then each Ht−1qΛ is a homogeneous sub-

space, which contains the compact A-orbits Aq′Λ, for all q′ ∈ SL(VΛ)∩
Ht−1q. Since SL(VΛ) is a group and SL(VΛ) ∩ Hi is dense in each Hi,
the set of such q′ is dense in each Ht−1q. Therefore, repeating the ar-
gument proving Theorem 1.14, we find that each κt−1(q) is a limit of

an increasing sequence from M̂G
(i)

n . For the case of general i we argue
in the same way, taking all q′ ∈ SL(VΛ)∩Ht−i+1q, and using the values
of κ corresponding to Ht−iq

′Λ to approximate the value Ht−i+1qΛ. �

8. The case n = 2

For a lattice Λ ⊂ Rn, we denote

λ(Λ)
def
= inf

{∣∣∣∏xi

∣∣∣ : (x1, . . . , xn) ∈ Λr {0}
}
.

The following was proved in [G]:

Proposition 8.1 (Gruber). For a lattice Λ of dimension 2, κ(Λ) <
1⇐⇒ λ(Λ) > 0.

Remark 8.2. Using the results of the previous sections, it is not
hard to show that Gruber’s result is not valid for general n. Indeed,
Mahler’s compactness criterion (Proposition 2.2) implies that the con-
dition λ(Λ) > 0 is equivalent to the boundedness of the A-orbit of Λ
in Ln. Now let n be composite and let µ be a homogeneous measure
on Ln supported on intermediate lattices which are not number field
lattices. In light of [LW, Step 6.3] and Proposition 3.6, for almost
any Λ ∈ supp(µ), AΛ is not bounded, so that λ(Λ) = 0. However by
Theorem 1.4, κ(Λ) < 1.

Proof of Theorem 1.12. Let Λ be a lattice in dimension 2, with κ(Λ) <
1. We wish to show that it is not strongly isolated. In view of Proposi-
tion 8.1, we know that λ(Λ) > 0, and it suffices to show that there is a
bounded A-orbit AΛ0 which contains AΛ in its closure but is not equal
to AΛ. Since n = 2, the A-action is the geodesic flow on the unit tan-
gent bundle to the modular surface, and the existence of such orbits is
well-known using symbolic dynamics. More specifically, using the view-
point of [AF], for any lattice Λ ∈ L2, let α, ω be two real numbers which
are endpoints of the infinite geodesic through a lift of the tangent vec-
tor corresponding to Λ in the upper half-plane. Since AΛ is bounded,
the continued fractions coefficients of the numbers α, ω are bounded,
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say by a number k. Denote these coefficients by α = [a−1, a−2, . . .] and

ω = [a0, a1, a2, . . .]. Now let α′
def
= [k + 1, k + 1, . . .] and

ω′
def
= [a0, a−1, a0, a1, a−2, a−1, a0, a1, a2, a−3, a−2, . . .].

That is, the bi-infinite word obtained by concatenating the expansions
of α and ω is in the orbit-closure, under the shift, of the the bi-infinite
word obtained by concatenating the expansions of α′, ω′.

In view of the symbolic coding of the geodesic flow [AF], the closure
of the projection in L2 of the geodesic with endpoints α′, ω′ contains
the projection of the geodesic with endpoints α, ω. Since the digits of
α′ are greater than k, the two orbits are distinct. Since all digits of
α′, ω′ are bounded by k + 1, the corresponding A-orbit has κ < 1. �

Theorem 1.14 concerns the existence of accumulation points for M̂Gn

besides 1, for n ≥ 3. As we now explain, Proposition 8.1 can be used
to settle this question in dimension 2.

Proposition 8.3. The set MG2 = M̂G2 has accumulation points
smaller than 1.

Proof. Let Badk denote the set of real numbers x whose continued
fraction coefficients a1(x), a2(x), . . . are bounded above by k. Then it
is well-known that ∪k≥1Badk contains all real quadratic irrationals.
Given a real quadratic irrational x, let L = Z ⊕ Zx be an additive
subgroup in the corresponding quadratic fieldQ(x), and Λ = Λ(x) ∈ L2

be the lattice in dimension 2, constructed via (14). Then, as is well-
known (and is a very special case of Corollary 4.10) the orbit AΛ(x)
is compact. The inequalities of [G] imply that a uniform bound on
the continued fraction coefficients of x imply a uniform bound on the
Mordell constant; in particular, for any k there is κ0 < 1 so that if
x ∈ Badk is a quadratic irrational, then κ(Λ(x)) ≤ κ0.

It is known that there is k such that Badk contains a sequence (xn) of

quadratic irrationals, for which the fields Fn
def
= Q(xn) are distinct qua-

dratic fields. Indeed, as explained to the authors by Dmitry Kleinbock,
one can take k = 2. By [CF, Theorem 1.6], the quadratics in Bad2

are the numbers
√

(3m− 2)(3m+ 2)/m, and it follows from Dirich-
let’s theorem on primes in arithmetic progressions, that among these,
numbers belonging to infinitely many distinct fields arise.

For each n, as in Step 1 of Theorem 6.8, there are v
(n)
1 , v

(n)
2 which

are locking points for Λ(xn). Let σ
(n)
1 , σ

(n)
2 be the two field embed-

dings of Fn. After applying an element of A, we find by (14) that

there are αn, βn in Fn such that v
(n)
1 =

(
σ

(n)
1 (αn), σ

(n)
2 (αn)

)
and v

(n)
2 =
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σ

(n)
1 (βn), σ

(n)
2 (βn)

)
, so that

κn
def
= κ(Λ(xn)) = σ

(n)
1 (αn) · σ(n)

2 (βn).

Since αn, βn span Fn, they are linearly independent over Q. On the

other hand σ
(n)
1 (αn)σ

(n)
2 (αn) ∈ Q. This implies that κn is irrational.

Since the κn belong to distinct quadratic fields, they are therefore dis-
tinct. So the sequence (κn) is an infinite sequence in MG2, bounded
above by κ0 < 1. This implies that MG2 has a limit point smaller
than 1. �

Remark 8.4. 1. By a similar argument, in order to show that there
are infinitely many distinct accumulation points in MG2, it suffices
to construct infinitely many disjoint finite blocks of natural numbers
Bn, and for each n, an infinite sequence of quadratics in distinct fields,
whose continued fractions coefficients lie in Bn.

2. Nikolay Moshchevitin has directed our attention to the work of
B. Divǐs [D]. Divǐs studied the so-called ‘Dirichlet spectrum’, namely
he defined

d(x) = sup
t≥1

min
p∈Z, q∈N,q≤t

t |qx− p|, and D def
= {d(x) : x ∈ R} ,

and showed that D contains an interval and is not closed. The Dirichlet
spectrum can be interpreted in terms of the one-sided geodesic trajec-
tory {gtΛx : t ≥ 0}, where Λx is the lattice spanned by (1, 0) and (x, 1),
while the Mordell-Gruber spectrum can be interpreted in terms of the
full trajectory {gtΛ : t ∈ R} of a lattice Λ. We suspect that the argu-
ments of Divǐs can be adapted to show that MG2 contains an interval
and is not closed.
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[KM] J. Klüners and G. Malle, A database for field extensions of the rationals,
LMS Journal of Computation and Mathematics (2001) 4 182–196.

[LW] E. Lindenstrauss and B. Weiss, On sets invariant under the action of the
diagonal group, Erg. Th. Dynam. Sys. 21 (2001), no. 5, 1481–1500,

[M1] G. A. Margulis, The action of unipotent groups in a lattice space, (Russian)
Mat. Sb. (N.S.) 86(128) (1971) 552–556.

[M2] G. A. Margulis, Problems and conjectures in rigidity theory, in Mathemat-
ics: frontiers and perspectives, 161-174, Amer. Math. Soc. (2000).

[McM] C. T. McMullen, Minkowski’s conjecture, well-rounded lattices and topolog-
ical dimension, J. Amer. Math. Soc., 18(3) (2005) 711–734.

[M] L. J. Mordell, Note on an arithmetical problem on linear forms, J. Lond. Math.
Soc. 12 34–36 (1937).

[PR] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory,
Academic Press (1994).

[PrRa] G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in
semisimple groups, Ann. Math. 96 (1972) 296–317.

[Rag] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer 1972.
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