ON THE MORDELL-GRUBER SPECTRUM
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ABSTRACT. We investigate the Mordell constant of certain families
of lattices, in particular, of lattices arising from totally real fields.
We define the almost sure value s, of the Mordell constant with
respect to certain homogeneous measures on the space of lattices,
and establish a strict inequality &,, < r,, when the y; are finite
and supp(p1) & supp(p2). In combination with known results
regarding the dynamics of the diagonal group we obtain isolation
results as well as information regarding accumulation points of the
Mordell-Gruber spectrum, extending previous work of Gruber and
Ramharter. One of the main tools we develop is the associated
algebra, an algebraic invariant attached to the orbit of a lattice
under a block group, which can be used to characterize closed and
finite volume orbits.

1. INTRODUCTION

1.1. The Mordell constant of a lattice. Let A C R" be a lattice.
By a symmetric boz in R™ we mean a set of the form [—ay,a1] X -+ X
[—an, a,], and we say that a symmetric box is admissible for A if it

contains no nonzero points of A in its interior. The Mordell constant
of A is defined to be

def Vol(B)

S e TSV 1)
where the supremum is taken over symmetric boxes B which are ad-
missible for A, and where Vol(B) denotes the volume of B and Vol(A)
denotes the volume of a fundamental domain for A. The purpose of
this paper is to study the quantity x(-), as a function on the space of
lattices; in particular, to study its image, which we call the Mordell-
Gruber spectrum, its generic values, and isolation properties. Research
on these questions stems from the so-called ‘Mordell inverse problem’
[M] and their in-depth study was carried out in a number of papers,
notably those of Gruber and Ramharter. We refer to [GL, Chap. 3]
for a detailed history, and give more precise references to the literature
below.
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Since the function k(A) is invariant under homotheties, there is no
loss of generality in restricting our attention to unimodular lattices (i.e.
lattices with Vol(A) = 1). We will denote the space of unimodular lat-
tices of dimension n by L,. It is equipped with the transitive action

of the group e SL,(R), and the function & is invariant under the
action of the subgroup A of diagonal matrices in G with positive di-
agonal entries’, since this action permutes symmetric boxes. We will
prove new results as well as apply known ones about this A-action on
L,, to derive consequences for k — see [EL] for a survey of the recent
progress in the study of this action.

1.2. Homogeneous measures and intermediate lattices. From
the dynamical point of view it is natural to study homogeneous A-
invariant measures on £,, which we now define. Let HA C L,, be closed
orbit of a real algebraic subgroup H C GG. We will see in Proposition 2.6
that the orbit HA supports a locally finite H-invariant measure which
is unique up to scaling.

Definition 1.1. Given an A-invariant closed orbit HA C L,, of a closed
connected real algebraic subgroup H C G we refer to the H-invariant
locally finite measure supported on HA as the homogeneous measure
associated with the orbit HA and denote it by puga. The closed orbit
HA will be referred to as the homogeneous space corresponding to the
measure.

We emphasize that we allow our homogeneous spaces to be of infinite
measure; when the measure gy is finite we say that the orbit HA
is of finite volume. It is well known that the orbit GA = L, is of
finite volume and we denote the corresponding (unique) G-invariant
probability measure by p . The starting point of our discussion is the
following

Theorem 1.2. Let p be a homogeneous A-invariant measure on L,,.
Then for p-almost any A

k(A) = max{k(A) : A’ is in the support of u}. (2)

Theorem 1.2 is a standard consequence of the ergodicity of the A-
action and is proved in §3. We note that a well-known conjecture of
Margulis [M2] asserts that in dimension n > 3 any A-invariant and
A-ergodic probability measure on £,, is homogeneous.

IFor notational convenience we will not work with the full group of linear maps
preserving x, which besides A, also contains non-positive diagonal matrices and
permutations of the coordinates.
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The following consequence of Theorem 1.2 answers a question of
Gruber, and improves on previous results of Gruber and Ramharter
[GR, R1, R2]. Note that Minkowski’s convex body Theorem implies
that k(A) < 1 for any A, this upper bound being attained by A = Z".
Therefore taking u = pz, we obtain:

Corollary 1.3. With respect to ., , almost every lattice has Mordell
constant equal to 1.

A natural question is the existence and characterization of lattices
with Mordell constant strictly smaller than 1. In view of Theorem 1.2,
given a homogeneous A-invariant measure pu, it makes sense to define
the generic value K, to be the almost sure value of x with respect to
1. One of the main results of this paper is the following:

Theorem 1.4. Let py, o be two A-invariant homogeneous measures
such that p is finite and supp(p1) & supp(pe). Then Ky, < Ky,

In §6 we show by examples that the hypothesis that p; is finite in
Theorem 1.4 is essential. Nevertheless, we will establish Theorem 6.1
which extends Theorem 1.4 to the case of A-invariant homogeneous
measures which are not necessarily finite, under a suitable additional
assumption.

In order to prove Theorems 1.4 and 6.1 we will study homogeneous
A-invariant measures. As will be shown in Proposition 3.2, the groups
H that give rise to homogeneous A-invariant measures are block groups
obtained by choosing a partition P = LjQ, of {1...n} and defining

H(P)={(9;;) € G:9i;; #0=1,j € Q for some (}° (3)

(where L° is the connected component of the identity in the group L).
In §4 we study orbits of block groups in detail. We attach to each orbit
HA of a block group an algebraic invariant we refer to as the associated
algebra which is a finite dimensional Q-algebra. Simple algebraic prop-
erties of the associated algebra allow us to determine whether the orbit
is closed or of finite volume (see Theorem 4.2). Whenever we have a
containment HiA C HyA of orbits as above, we have a reverse inclu-
sion of the associated algebras and the condition which allows us to
generalize Theorem 1.4 is a simple algebraic property of the inclusion
of the associated algebras.

Definition 1.5. A lattice A € L,, is said to be intermediate (resp.
intermediate of finite volume type) if it belongs to an A-invariant ho-

mogeneous space (resp. of finite volume) HA which is strictly contained
in £,,.
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The case H = A will be of particular interest.

Definition 1.6. A lattice A for which AA is closed will be referred
to as an algebra lattice. If furthermore the orbit is of finite volume

(equivalently, if it is compact) then the lattice is said to be a number
field lattice.

Corollary 5.3 will justify our choice of terminology. It shows that
a lattice A is an algebra (resp. number field) lattice if and only if the
associated algebra is n-dimensional (resp. is an n-dimensional field)
over the rationals.

Combining Theorems 1.2 and 1.4 we obtain the following

Corollary 1.7. Let A € L, be an intermediate lattice of finite volume
type, then k(A) < 1.

Corollary 1.7 is probably not new for number field lattices (see e.g.
[R1]) but we could not locate a suitable reference.

1.3. Isolation results. The results below concern isolation properties
that follow from Theorem 1.4 and a rigidity result for the A-action in
dimension n > 3 (Theorem 7.1).

Definition 1.8. Let A be a lattice and let ¢y > 0. We say that A is
go-isolated if for any 0 < € < gy there is a neighborhood U of A in L,
such that for any A’ € U ~ AA, k(A') > k(A) + .

We say that A is locally isolated if it is eg-isolated for some gy > 0,
and that A is strongly isolated if it is g¢-isolated for g = 1 — k(A).

Theorem 1.9. Letn > 3, and let A be a number field lattice, associated
with the degree n number field F'. Then A is locally isolated. Moreover
A is strongly isolated if and only if there are mo intermediate fields

Q¢ KCF.

Theorem 1.9 extends results of Ramharter [R1], who shows local
isolation under an additional assumption, but does not require n > 3.
Our methods crucially rely on the hypothesis n > 3. An immediate
consequence is:

Corollary 1.10. If n > 3 s prime, then any number field lattice in
R™ 1s strongly isolated.

We remark that when n is prime, an intermediate lattice of finite
volume type is automatically a number field lattice. Extending another
result of [R1] we show:

Corollary 1.11. For any n > 3, the set of strongly isolated lattices is
dense in L,,.
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The fundamental difference between the cases n = 2 and n > 3 is
highlighted in the following;:

Theorem 1.12. In dimension n = 2 there are no strongly isolated
lattices.

Theorem 1.12 relies on work of Gruber [G]. In contrast with Theo-
rem 1.9, intermediate lattices which are not number field lattices are
typically not isolated. In §7 we will define a notion of ‘local relative
isolation” and prove:

Theorem 1.13. Let pu be an A-invariant homgeneous probability mea-
sure corresponding to a finite volume orbit HA with A G H & G. Then
almost any lattice with respect to p is not locally isolated but is locally
1solated relative to H.

1.4. The reduced Mordell-Gruber spectrum. We denote by MG,,
the Mordell-Gruber spectrum, which is the set of numbers x(A) where
A ranges over all lattices in dimension n. We briefly summarize some of
the known facts about the Mordell-Gruber spectrum. Siegel (see [GL])

showed that &, L inf MG,, > 0. Many things are known about MGo,
see [G]. The values ko and k3 are known, the latter by a difficult work
of Ramharter [R3]. In [R3] Ramharter also showed that x5 belongs to
MG and is an isolated? point. Various lower bounds on ,, have been
proved by various authors, and recently [SW] the authors obtained the
lower bound x,, > n~"/2.

We wish to study accumulation points of MG,,. There is a simple
trick to generate such points which we now describe. As we explain
in §8, it can be deduced from results of Gruber that MGy has many
accumulation points. We say that a lattice A C R"™ is decomposable if
n = ni+ng, n; > 0, and R™ = R™M@GR™ is the direct sum decomposition
corresponding to partitioning the coordinates into subsets of sizes n;
and ng, and we can write A = A; & Ay, where A; = AN R"™. In this
case we clearly have k(A) = k(A1)k(Ay). Taking direct sums with Z"
we get embeddings MG,,, — MG,, for any n; < n. We are interested
in the part of the spectrum not arising in this way. That is, we define
the reduced Mordell-Gruber spectrum to be

MG, ¥ {k(A) : A C R" a lattice which is not decomposable}.

As will be seen in Proposition 5.10, number field lattices are never de-
composable. We are interested in the existence of accumulation points

of 1\71?}71

2The isolation of a number in a subset of R should not be confused with the
isolation property of Definition 1.8.
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Theorem 1.14. Let i be an A-invariant homogeneous probability mea-
sure corresponding to a finite volume orbit HA with A & H. Then
there is a sequence of number field lattices Ay for which k(Ag) 7 K.

In particular, k, is not an isolated point of MG,,.
Taking p to be the Haar measure we obtain

Corollary 1.15. For any n there is a sequence (Ag) of number field
lattices for which k(Ay) 2 1. In particular 1 is not an isolated point of

MG,,.

Given a subset M C R, we denote M© % A7 and by M*+D the
elements of MW" which are limits of strictly increasing sequences in
M®),

Theorem 1.16. For any natural number t, there is n so that 1 €
MG, .

1.5. Organization of the paper. In sections §2 and §3 we recall some
standard results and prove some useful results about closed orbits for
actions of algebraic groups on £,,. From these we deduce Theorem 1.2.
In §4 we introduce the associated algebra of a lattice and characterize
intermediate lattices in terms of its algebraic properties. As we explain
in §5, the associated algebra of a lattice A can be used to classify all
A-invariant homogeneous subsets containing A. Moreover in §5.2 we
show how to explicitly construct all intermediate lattices. The proof of
Theorem 1.4 is given in §6 and of the isolation results in §7. In §8 we
recall results of Gruber and Ramharter for dimension n = 2, give some
more information about M Gs, and prove Theorem 1.12.
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thors were visiting the Erwin Schrédinger Institute in Vienna in Octo-
ber 2011, as part of the program Combinatorics, Number theory, and
Dynamical Systems. The support of ESI is gratefully acknowledged.
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ful discussions. We are grateful to Ido Efrat, Alex Gorodnik, Dmitry
Kleinbock and Nikolay Moshchevitin for useful discussions and pointers
to the literature. We gratefully acknowledge support of European Re-
search Council grants DLGAPS 279893 and Advanced research Grant
228304, ISF grants 190/08, 357/13, and the Chaya Fellowship.

2. GENERALITIES

The following two propositions are standard and explained in [GL].
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Proposition 2.1. The function  : L, — R has the following proper-
ties:
(i) For all A, k(A) < 1.
(ii) If A, — A then x(A) < liminf k(Ag); i.e. Kk is lower semi-
continuous.
(ili) For all A and all a € A, k(aA) = k(A).
(iv) K(Z™) =1.

Proposition 2.2 (Mahler’s compactness criterion). A subset X C L,
is bounded (i.e. has compact closure) if and only if there is a neighbor-
hood U of 0 in R™ such that for any A € X, ANU = {0}.

Corollary 2.3. If A € L,, and By is a symmetric cube whose volume
is smaller than 2"k(A), then there is a € A such that By is admissible
for al. In particular for any kg > 0 there is a compact K C L, such
that for any A € L,, with k(A) > ko, there is a € A such that a\ € K.

Proof. For the first assertion, let B be an admissible symmetric box
such that Vol(B) > Vol(B), and let a € A such that aB is a cube
symmetric about the origin. By considering volumes we see that By C
aBB. This proves the first assertion. The second assertion follows via
Proposition 2.2. O

2.1. Algebraic groups and Q-structures. We use the term real al-
gebraic group to refer to a finite index subgroup of the set of real points
of a Zariski closed group. Often we simply say algebraic group. With
this terminology an algebraic group need not be Zariski closed but is
of finite index in its Zariski closure. In the remainder of this section we
will recall several classical results about algebraic groups and lattices in
Lie groups. We refer the reader to [Rag| for more details and pointers
to the literature. In this paper, we have preferred a concrete point of
view so we will work throughout with subgroups of G = SL,(R) and
with the space £, = SL,(R)/SL,(Z), rather than the more general
setup where G is a real algebraic group and G/I" is the quotient of G
by a lattice I'. All the results we state below are valid in this more
general context.

Given a lattice A € L, we denote Vj def spangA. Note that Vj is
a Q-vector subspace of R" such that Vi ®p R = R", but Vi need
not coincide with the standard Q-structure Q™. We say that a matrix
g € G is A-rational if gV, C V}; the reader may verify that g € G(Q)
if and only if ¢ is Z"-rational. As in [Rag, Preliminaries, §2] one uses
a Q-structure on R" to define Q-algebraic subgroups of SL,(R). If we
use the Q-structure of V we will say that such a subgroup H is defined
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over Q with respect to the Q-structure induced by A. We will use two
characterizations of such subgroups. They are the algebraic groups H
whose A-rational points are Zariski dense in their Zariski closure; they
are also the algebraic groups H such that for any g € G for which
gZ"™ = A, the conjugate g~ Hg is a Q-subgroup of G' (with respect to
the standard Q-structure Q™). See [Rag] for definitions of morphisms
defined over Q and Q-characters.
We recall the following classical fact, see e.g. [Rag, Chap. XIII].

Proposition 2.4 (Borel Harish-Chandra). Let H C G be an algebraic
group defined over Q with respect to the Q-structure induced by A € L,,.
Then the orbit HN C L, s of finite volume if and only if H° has
no non-trivial Q-characters. In particular, if H is semisimple or is
generated by unipotent elements then HA is of finite volume.

2.2. Closed orbits of real algebraic subgroups. The following ob-
servation is useful.

Proposition 2.5. Let A € L, and let H be an algebraic subgroup of
G. Denote by Hy the stabilizer of A in H and by Hy the Zariski closure
of Hy. Then Hy is a lattice in Hy. Moreover, if the orbit HA is closed
in L,, then the connected component Hg of the identity in Hy contains
the unipotent elements of H.

Proof. We use the Q-structure induced by A. For any Q-character y of
an algebraic group containing Hy, the image y(H,) is bounded below
by a bounded denominators argument. Therefore x(H},) is finite, which
implies the finiteness of x(Hy). In particular, y is trivial on (Hy)°. By
Proposition 2.4, (Hy)a is a lattice in Hp.

Since H, Hy are commensurable, the same holds for Hy, (Ho)a. It
follows that Hj is of finite index in (Hp)x and thus H, is a lattice in
Hy as well.

Now suppose u is a unipotent element of H and suppose HA is
closed. There is a one-parameter unipotent subgroup {u(t)} C H such
that w = u(1). By a classical result of Margulis [M1], the trajectory
{u(t)A : t > 0} is not divergent. The orbit map hH, — hA is proper
since we have assumed that H A is closed, and this implies that the orbit
{u(t)Hy : t > 0} is non-divergent in the quotient H/H,. We have an
H-equivariant factor map H/Hy — H/H,, so the orbit {u(t)H, : t >
0} is non-divergent in H/H,, which is an algebraic variety on which a
unipotent trajectory is either a fixed point or is divergent. This implies
that {u(t)} C Hy, and by connectedness, {u(t)} C Hg. O

As we allow homogeneous subspaces of infinite measure, we need the
following fact:
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Proposition 2.6. Let H C G be a real algebraic group and A € L,
such that HA is closed. Then there is an H-invariant locally finite
measure on HA. This measure is unique up to scaling.

We remark that in contrast to finite volume homogeneous spaces, for
infinite volume homogeneous spaces H need not be unimodular. We
also remark that in the statement of the Proposition one may replace
L,, with any homogeneous space G/T" where G is a real algebraic group
and I is a lattice.

Proof. Let Hy denote the stabilizer of A in H. There is an injective
orbit map

H/Hy — L, hHy — hA,

and the assumption that HA is closed implies that this map is a home-
omorphism onto its image. So it is enough to prove that there is an
H-invariant locally finite measure on H/H,. For a Lie group L, let Ay,
denote its modular function. In light of general facts about quotients
of Lie groups (see e.g. [Rag, Chapter 1]), it is enough to show that

Apluy, = An,- (4)

Since H) is discrete, it is unimodular, so Ay, is trivial. So we need to
show that the restriction of Ay to Hy is trivial. We have the explicit
formula

Ap(h) = [det Ad(h)]ul,

where u is the Lie algebra of the unipotent radical U of H. In other
words Ag(h) is the multiplicative factor by which conjugation by h

multiplies the Haar measure on U.

We will now show that T U 0 i A is a lattice in U. Indeed, let

Hy be as in Proposition 2.5, let H' be the subgroup of H generated
by the unipotent elements of H, and let Uy, U’ denote respectively the
unipotent radicals of Hy, H'. By Proposition 2.5,

H' C (Hy)° C H,

which implies
UcUycCcU '

On the other hand, H’ is a characteristic subgroup of H, and hence
so is its unipotent radical. Therefore U’ is normal in H, which implies
that U = U’. In particular U = U,. It now follows from [Rag, Cor.
8.28] that I' N U is a lattice in U, as required. Since conjugation by
elements of Hj preserves both U and H,, it fixes I' and so fixes the
covolume of U/T". This implies (4). O



10 URI SHAPIRA AND BARAK WEISS

3. ERGODICITY AND CONSEQUENCES

In this section we prove Theorem 1.2 by establishing the ergodicity
of the A-action with respect to homogeneous A-invariant measures (see
Proposition 3.6). In order to establish this, we study in some detail
the structure of homogeneous A-invariant spaces in L,,.

Let X be a locally compact topological space, let p be a locally
finite Borel measure on X, and let A be a group acting continuously
on X preserving p. The action is called ergodic if any invariant set
is either of zero measure, or its complement is of zero measure. Let
supp(u) denote the topological support of . Then it is well-known (see
e.g. [Z]) that when the action is ergodic, any A-invariant measurable
function X — R is almost everywhere constant and for almost every
x € X, the orbit Az is dense in supp(pu).

Theorem 3.1. Let X = AAy be an orbit-closure for the A-action on
L,. Then

k(Ag) = sup{k(A) : A € X}.

In particular, if p is an A-invariant and A-ergodic measure, then for
p-almost every Ay we have

ki = sup{r(A) : A € supp(u)} = r(Ao) (5)

and so the supremum in (5) is attained. Moreover supp(p) contains a
lattice Amax with K(Amax) = Kk, such that the cube C of volume 2"k,
is admissible for Amax (so the supremum in (1) is attained for A =

Apax, B=C).

Proof. By Proposition 2.1(ii),(iii), for any A € X, k(A) < k(Ag). This
proves the first assertion. The second one follows taking X = supp(u)
and recalling that almost every A-orbit in X is dense.

For the last assertion, let A € supp(p) with x(A) = , and let Cy
be a sequence of symmetric cubes with Vol(Cy)  2"k(A). For each k,
by Corollary 2.3 there is a; € A so that Cj is admissible for ax(A) and
the sequence {ayA} is contained in a bounded subset of £,,. Let Ajax
be a limit of a converging subsequence of {a;A}. Then A € supp(p)
since supp(p) is closed and A-invariant. Moreover by construction, the
cube of volume 2"k, is admissible for Ap,c. This implies that Ay, has
the required properties. O

3.1. Block groups. Given a partition of the indices {1,...,n}

P <{1,...,n}:|_|Qg>, (6)



ON THE MORDELL-GRUBER SPECTRUM 11

we define the block group corresponding to P to be the connected sub-
group H = H(P) of G whose Lie algebra is

h:a@@@gst (7)

{ s,teQy

where a is the Lie algebra of A and g, is the one-dimensional Lie
algebra spanned by the matrix with 1 in the entry (s, ) and 0 elsewhere
(note that we always have A C H). We refer to the elements Q, of P
as the blocks of the partition and denote by |P| the number of blocks.
When the blocks are of equal size we say that P is an equiblock partition
and H(P) is an equiblock group. Given a partition P we shall denote
by ~p the equivalence relation it defines on {1,...,n}. For example,
up to permutations of indices, the three equiblock partitions for n = 4
are

PO = ({1}7 {2}7 {3}7 {4}) ) P2 = ({17 2}7 {374}) ) P2 = ({17 27 37 4}) )
and the corresponding equiblock groups are

Xk
Xk

H(Py) = A, H(P,) = NG, H(P,) = G.

x ok
Our interest in block groups is explained by the following:

Proposition 3.2. Let HA C L,, be a homogeneous space (i.e. a closed
orbit of a closed connected subgroup H C G). Then if HA is A-
invariant, then A C H and H = H(P) for some partition P.

We will use the following simple Lemma whose proof is left to the
reader.

Lemma 3.3. If HiA C H>A is a containment of two orbits in L, of
closed groups Hy, Hy and Hy is connected, then Hy C Hs.

U

Proof of Proposition 3.2. The fact that A C H follows from Lemma 3.3.
Note that if H C G is a closed connected subgroup containing the di-
agonal group then in the above notation, the Lie algebra of H satisfies
h = a® P gs, where the sum is taken over some subset of the set of
pairs (s,t). Since b is a Lie algebra, g5, g, C b implies g, C h. We
need to show that
gt Ch = gsCh.

Let ugy; C H be the one parameter unipotent group with Lie algebra
gs:- There exists a one-parameter subgroup Ag C A, such that the
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group B generated by Ay, {us(x)} is the Borel subgroup of the copy
of SLy(R) C G which is generated by the two groups w;s(x), ug (). We
denote this copy of SLy(R) by Hy. As HA is assumed to be closed we
have HA D BA. By the work of Ratner (see [Ra] for a short proof) we
have HyA = BA and so we conclude that {uy(z)A : 2 € R} € HA. By
Lemma 3.3, {us(z)} C H as desired. O

We will see in Corollary 5.4 that in the case HA is of finite volume,
there are further restrictions on the partition P in the above proposi-
tion.

3.2. Structure of A-invariant homogeneous measures. Let H =
H(P) be a block group. Then it can be written as a direct product
H(P)=Z(P)-S(P), where
Z(P)& {a € A : a centralizes H(P)}

(that is, Z(P) consists of the positive diagonal matrices in H(P) that
have constant eigenvalues along the blocks of P), and S(P) is the com-
mutator group of H(P). More concretely, S(P) is the semisimple group
of matrices having the block structure given by P with the further re-
quirement that the determinant of each block is 1.

The following proposition shows that an A-invariant homogeneous
measure has a simple product structure.

Proposition 3.4. Let H = H(P) be a block group, HA an A-invariant
homogeneous space, and . = pugp the corresponding A-invariant mea-

sure. Then there is a decomposition of Z = Z(P) as a direct product
Z = Z, such that

(1) If Hy = Z, - S, where S = S(P), then HiA is of finite volume.
(2) The map

Zy— AN, zr— zZA

18 proper, and a homeomorphism onto its image. In particular,
the orbit Z,\ is divergent.
(3) The map

Z, x HyA = HA, (2, hA) = zhA

s a homeomorphism onto its image, under which u is identified
with v X pg, n, where v is Haar measure on Zs.

Remark 3.5. Note that, since Z is central in H, the conclusions (1)
and (2) hold for any A’ € HA.
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Proof. Let Hy = (Hy)° C H where Hy denotes the Zariski closure of
H,. Tt follows from Proposition 2.5 that the orbit HiA is of finite
volume, and also that S C H;. Since

SCH, CcZ-S=H

we find that H; = Z, - S, where Z, det Hy N Z which establishes (1).
Let Z, be any direct complement of Z, in Z; that is, a subgroup
of Z such that Z = Z, - Z, (a direct product). Consider the natural
embeddings
Hl/(Hl)A‘—)H/HA‘%HACﬁn (8)
As the orbits HA, HiA are closed, the embeddings in (8) are proper.
We claim that the natural map

Zs X (Hl/(Hl)A) — H/HA, (Z, h(Hl)A) —> ZhHA, (9)

is a homeomorphism. Once this is established, (2) and the first state-
ment of (3) follow. The statement regarding the measures now follows
from the uniqueness of an H-invariant measure [Rag, Chap. 1] on
H/H,.

We establish (9). Because H = Z - H; the map is clearly onto. It is
1-1 because assuming (z1, hi(Hy)a) # (22, ho(Hy)a) than if zihi Hy =
zoho Hy then since Z, is central, z;lzlhglhl € Hy. In particular, this
element belongs to Hy - the Zariski closure of Hy. It follows that
2y ‘21 € Hy and in turn that the one-parameter subgroup generated by
it lies in Hy as well. As this subgroup is connected, it belongs to H; and
SO 22_121 € H,. Since Z;, N H; = e we conclude that z; = z5 and finally
that hy = ho because of the injectivity on the left of (8). We are thus
left to justify the properness of the map (9). Note that (H;)y < Ha
is of finite index and thus, as far as properness is concerned, it is
enough to prove properness of Z; x (Hy/(Hy)x) — H/(H;),. Because
H = Z, - Hy is a direct product, this is equivalent to saying that the
map Z, — H/(Hy), is proper. The latter is of course implied by the
stronger statement that the map Z, — H/H; = Z, is proper (in fact a
homeomorphism). O

Proposition 3.6. Let pu be an A-invariant homogeneous measure on
L, corresponding to the closed orbit HA. Then the A-action is ergodic
with respect to .

Proof. We use the notation of Proposition 3.4. Identifying the orbit HA
with the product Z, x HiA we see that, since Z;, C A, the statement
reduces to the ergodicity of the action of A N H; with respect to the
finite Hi-invariant measure pp,x. The latter statement follows from
the Howe-Moore Theorem (see e.g. [Z]). O
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Proof of Theorem 1.2. The statement follows from Theorem 3.1 and
Proposition 3.6. U

Remark 3.7. We use the notation of Proposition 3.4.

(1) It is clear from Proposition 3.4, that the closed orbit HA is of
finite volume if and only if Z = Z,,.

(2) The group Z, in Proposition 3.4 is the center of H; and so
is a Q-group itself (with respect to the Q-structure induced
by A). Moreover, it has no non-trivial Q-characters as these
will induce corresponding ones on H; because H; is a direct
product Hy = Z,-S. By the Borel Harish-Chandra Theorem it
follows that Z,A is of finite volume (which in this case means
compact) or in other words, if we denote Z) = Stabz(A) then
Z, is a lattice in Z,. As Z, C A =2 R" ! we conclude that in
particular, the discrete subgroup Z, is a finitely generated free
abelian group with rank(Z,) = dim Z,.

(3) Combining (1),(2) we conclude that the orbit HA is of finite
volume if and only if rank(Z,) = dim Z.

4. INTERMEDIATE LATTICES

We now introduce intermediate lattices, and the homogeneous sub-
spaces they belong to, in detail. This builds on and expands earlier
work of several authors, see [LW, T, McM, ELMV]. Our approach is
close to that of [McM], in that we emphasize the structure of algebras
of matrices associated with a lattice. We introduce for any lattice an
associated algebra. In §4.3 we characterize intermediate lattices and
the homogeneous spaces they belong to by simple algebraic properties
of the associated algebra. In §5.2 we explain some constructions of
lattices, and show using the aforementioned characterization, that the
constructions give rise to all intermediate lattices. In turn, this gives
rise to an explicit construction of all homogeneous A-invariant mea-
sures. These results will be an important ingredient in the proof of
Theorem 1.4.

4.1. Q-algebras. Let F;, j = 1...r be number fields and consider
the direct sum B = &/_,F};. Equipped with coordinate-wise addition
and multiplication, B is a finite dimensional Q-algebra. By the Artin-
Wedderburn Theorem, any commutative finite dimensional semisimple
Q-algebra is of the above form.

By a homomorphism between two such algebras we shall mean a
map that respects the algebraic operations and sends the identity of
one algebra to the identity element of the other. If B is an algebra as
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above, then an algebra B’ C B will be referred to as a subalgebra if the
inclusion B" < B is a homomorphism; in particular, B and B’ share
the same unit. A subalgebra B’ C B will be referred to as a subfield
if it is a field. We emphasize that if B = ®7F} as above, with r > 1,
then the F}’s are not subalgebras nor subfields.

The theory of algebras of the above form is almost completely analo-
gous to the theory of number fields with only minor adaptations result-
ing from the fact that we deal with direct sums of number fields. For
example it is clear that if B = @®7F; is an n-dimensional Q-algebra,
then it has exactly n distinct homomorphisms into C and those are
obtained by first projecting to the components F; and then composing
with the various embeddings of the fields F} into C.

4.2. The associated algebra. Let D denote the algebra of n x n
diagonal real matrices. For ¢ = 1,...,n, let p; : D — R be the algebra
homomorphism diag(dy, . ..,d,) — d;. Given a partition P as in (6) we
denote by D(P) the subalgebra of D defined by

D(P) o {z € D : pi(x) = pj(x) whenever i ~p j}.

Definition 4.1. Let A C R" be a lattice.

(1) We denote V o spang(A).
(2) For any partition P we define the associated algebra of A with
respect to P to be

Ay(P)YE {a e D(P):aVy C Vi)

We denote by P, the partition into singletons, denote Ax(Py)

simply by Ajx, and refer to it as the associated algebra to A.
(3) Given a subalgebra B C Aj we define the associated partition

Pg to be the partition of {1,...,n} induced by the equivalence

relation

i~j <= pilp~pils

A partition of the form Pp will be referred to as an algebra

partition for A and in case B C A, is a subfield, as a field

partition for A.

Examples for the case n = 4 will be given in §5.4. The following
result demonstrates the usefulness of the associated algebra for the
study of the A-action on L,:

Theorem 4.2. Let A € L,,, P a partition, and H = H(P). The orbit
HA is closed if and only if P is an algebra partition and is of finite
volume if and only if P s a field partition.
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Theorem 4.2 is a compressed version of Theorem 4.8, which is the
main result of this section. Theorem 4.8 will be stated and proved
below after some more preparations. As will be seen in Corollary 4.6,
the question of whether or not a partition P is an algebra partition has
to do with the dimension of the corresponding associated algebra. Note
that the elements of Ax(P) are simply the rational matrices in D(P)
with respect to the rational structure induced by A. The associated
algebra of a lattice A is a commutative algebra over Q. It is finite-
dimensional because it can be conjugated into Mat,, «,(Q).

Proposition 4.3. For any lattice A and any partition P we have that
dimg A (P) = dimg (AA(P) ®g R). In particular, dimg Ax(P) < |P|
with equality if and only if D(P) is a subspace of Mat,, «x,(R) which is
defined over Q with respect to the Q-structure induced by A.

Proof. 1t is well known that for any number field /' one has the equality
dimg F' = dimg (F ®g R). Since A, (P) is a semisimple algebra, the
Artin-Wedderburn theorem implies that it is isomorphic to a direct
sum of number fields and the first part of the Proposition follows.
The dimension bound follows from the natural inclusion Ax(P) ®g
R C D(P). Finally, as noted above, with respect to the Q-structure
induced by A, A(P) consists of exactly the rational points of D(P)
and therefore, by the first part, D(P) has a basis consisting of rational
matrices if and only if dimg Ax(P) = dimg D(P). O

Since matrices in D(P) commute with matrices in H(P), we have:

Proposition 4.4. The assignment A — Ax(P) is constant along H(P)-
orbits. Therefore, Ax(P) is an invariant attached to the orbit H(P)A.

n

Theorem 4.5. Let A € L, be a lattice and B C Aj a subalgebra.
Then there is an isomorphism of Q-algebras ¢ : @;Zl F; — B, where

the F;’s are totally real number fields of degrees d; def deg(F;/Q) such

that
Pe= || I (10)
j=1,...,r
k=1,....d;
where

(1) For each j, the number s, o |1; x| is independent of k.

(2) For each j,k, there is a field embedding o : F; — R such that
for all i € Iy, 0 = p; o p|p,. Moreover any field embedding of
F; appears for some choice of k.
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Before proving Theorem 4.5 we deduce a characterization of the par-
titions that Theorem 4.2 may be applied to.

Corollary 4.6. Let A € L, be given. A partition P is an algebra
partition for A if and only if dimg Ax(P) = |P| and in that case,

P =Pp, where B = A\(P).

Proof of Corollary 4.6. Suppose P is an algebra partition for A; that
is, there exists a subalgebra B C A, such that P = Pg. It follows
from the definition that A (Pg) D B so by Proposition 4.3, in order to
conclude that dimg A (Pg) = |Pg|, it is enough to show that dimg B =
|Pg|. The latter statement follows from the description of Py given in
Theorem 4.5.

In the other direction, assume that P satisfies dimg . Ax(P) = |P|
and denote B = Ax(P). Then it follows from the definitions that P
refines Pp. Again, by Theorem 4.5 we deduce that dimg B = |Pg| and
so the partitions P, Ppg are equal. O

For the proof of Theorem 4.5 we will require the following well-known
fact (for which we were unable to find a reference).

Lemma 4.7. Let F' be a number field of degree d over Q, let o; : F' —
C,i=1,...,d be its distinct embeddings in C, and let ky,..., kg € Z
be such that for all x € F, [[{ oi(z)% € Q. Then all the k;’s are equal.

Proof. Assume by contradiction that not all the £;’s are equal. Without
loss of generality we may assume that k; is the minimal one and that
k1 < ko say. Since the norm map N(z) = [] o:(z) has its values in Q,
we may divide through by N(x)* to assume that k; = 0 < ko and all
the other k;’s are non-negative. Choose a basis aq, ..., aq of F' over Q,
and denote by ¢ the polynomial

(X1,..., X, l—)HO'z (Za] )

which we can simplify as

d
) = HLZ()?)’“, where L;( déf ZUZ
i=1

The L; are linearly independent linear functionals. Thus the zero set of
© is the union of the kernels of those L; for which k; # 0; in particular
¢ is identically zero on ker(Lsy) but not on ker(Ly).

Now let ¢ : C — C be a field automorphism such that o1 = 0 0 5.
Then for each X € Q% we have ¢(X) € Q, hence 0 o p(X) = p(X),
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and since Q¢ is Zariski dense in C¢, this implies that o o ¢ and ¢ are
identical as polynomial maps. On the other hand o; — oo 0g; is a
permutation o; — oy with 7(2) = 1. This means that ¢(X) can also
be written as []¢ L (X)¥, and so ¢ is identically zero on ker(L;) —
a contradiction. U

Proof of Theorem 4.5. The fact that B is isomorphic to a direct sum
of number fields is a consequence of the Artin-Wedderburn Theorem
and follows from the fact that it is a finite dimensional semisimple Q-
algebra (see also [T, Prop. 3.1]). So we have an abstract isomorphism
Y @;:1 F; — B, where the F}’s are number fields, and for each ¢,
consider the restriction of p; to B, which we continue to denote by p;.
Since the diagonal embedding of Q as scalar matrices is a subalgebra
of B, each p; is non-zero. For each j, let 1; denote the image of 1 € F}
in B. Then for j # j° we have 1; -1 = 0. Since R has no zero-
divisors, for each i there is a unique j such that p;(1;) # 0. This
implies that p;o¢|r, : F; — R is a non-zero map that respects addition
and multiplication. It follows that it is a real field embedding.

To prove assertions (1),(2) it remains to show that for each j, and
each field embedding o : F; — C, the number of indices ¢ for which
0 = p; 0  is a nonzero number independent of o. To this end, for each
x € Fj let

Y(r) = p(x)+ Y 1y € BC Ay (11)

J#i
This is a diagonal matrix whose i-th entry is 1 if p; o ¢|F; is zero, and
is p; o p(x) otherwise. In particular, det(z) is the product of the
numbers p; o (), taken over the indices i for which p; o ¢|F; is not
zero, and is a rational number, since V) — on which ¢ (z) acts — is a

Q-vector space. So the claim follows from Lemma 4.7.
O

4.3. Recognizing intermediate lattices. We are now in a position
to prove the main result of this section.

Theorem 4.8. Let A € L,,, let P be a partition, and let H = H(P), Z =
Z(P) be the corresponding groups. The following are equivalent:

(1) HA is closed in L.

(2) H is defined over Q with respect to the Q-structure induced by
A.

(3) Z is defined over Q with respect to the Q-structure induced by
A.
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(4) dimg Ax(P) = |P| (that is, P is an algebra partition for A, by
Corollary 4.6).

Moreover, the orbit HA is of finite volume if and only if the associated
algebra Ax(P) is a field of degree |P| over Q.

Proof of the first part of Theorem 4.8. Recall the notation of Proposi-
tion 3.4: Z = Z(P),S = S(P), Hyx = Staby(A), Hy = Zcl(Hy), Hy =
Hg, where Zcl stands for Zariski closure. Throughout the proof we
will only refer to the Q-structure induced by A.

(1) = (3): As we saw in the proof of Proposition 3.4, Hy is a Q-
algebraic group, contains H; as a finite-index subgroup, and moreover
S C H = Z,-5 C H and so Hy is reductive. Let GG; denote the
centralizer of H; in GG, which is again a reductive QQ-algebraic group
containing Z. By [Rag, Proposition 10.15] this implies that the orbit
G1A is closed and hence can be viewed as the quotient of a reductive
Q-group by its integral points. We now claim that Z C (7 is a maximal
R-diagonalizable group and that ZA is a closed orbit. Assuming this,
applying [TW, Theorem 1.1], we find that Z is a Q-subgroup of Gj,
and hence a Q-subgroup of G. Thus the claim implies (3).

From the definitions Z = AN G;. As (G; is normalized by A we
deduce that Z is a maximal R-diagonalizable subgroup of GG;. Since
both orbits HA, G1A are closed, by [Sh, Lemma 2.2] so is (H N G1)A
and since Z is of finite index in H N Gy, ZA is closed as well.

(3) = (2): As H is the connected component of the identity in
the centralizer of Z in G, if Z is a (Q-algebraic group, so is H.

(2) = (1): Since H is reductive and defined over Q, it follows
from [Rag, Proposition 10.15] that HA is closed in L,,.

(4) = (3): It follows from Proposition 4.3 that if dimg .4, (P) =
|P| then D(P) is defined over Q. As Z is of finite index in D(P)N G
we conclude that Z is defined over Q.

(3) = (4): If Z is defined over Q, it contains a Zariski dense subset
of A-rational matrices. These are by definition elements of A, (P) so
we conclude that the dimension of the real vector space Zcl(Ay(P)) is
at least the dimension of Z, which is |P| — 1. On the other hand, the
line of scalar matrices is always in this space (regardless of A) and so
the dimension is |P| as desired. U

In order to complete the proof of Theorem 4.8 we will need the fol-
lowing Proposition which relates the structure of A, with the structure

of the stabilizer of A in Z(P).

Proposition 4.9. Let A € L,, P a partition, and Z = Z(P). Let
Fi,...,F. and ¢ be as in Theorem 4.5 applied to B = Ax(P). Then
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the group

ZAdéf{aE Z :al = A}

is contained as a finite index subgroup in ¢ (]} (’)jx), where O is the
(multiplicative) group of units of the ring of integers of F;.

Proof. We first prove the inclusion Z, C ¢ (H’{ O]X) . Suppose a €
Zn C Ay. Inlight of Theorem 4.5 there are x; € F; such that for each
i € Lk, pi(a) = o(z;), where the o are the distinct field embeddings
of F;. We need to show that each x; is a unit in the ring of integers of Fj.
Let M be a matrix representing the action of a, with respect to a basis
of R™ which generates A. Since a preserves A, M has integral entries,
and has x; as an eigenvalue. Thus z; is a root of the characteristic
polynomial of M which is a monic polynomial over the integers, and so
is an algebraic integer. As the same argument applies to a™?, xj_l, M1
we conclude that z; is a unit.

We now show that Z, is of finite index in this inclusion. For a

fixed j, let d = d; o deg(F;/Q). By Dirichlet’s theorem, O contains

d—1 multiplicatively independent elements o, . .., ag_1, so it suffices to
show that a finite power of each M; fixes A, where M; = ¢(«;) € Ax(P),
where 1 is as in (11) above.

To this end, fix i and write o = «;, M = M;, and note that by (11)
and Theorem 4.5 the characteristic polynomial py(X) of M is of the
form

pur(X) = [ma(X)]"[X — 1],
where m,(X) denotes the minimal polynomial of o and by, by are non-
negative integers. In particular, py;(X) has coefficients in Z and degree
n. This implies that the additive group A generated by UZ;& MFA is
M-invariant. Representing M with respect to a basis of Vi contained
in A, we see that M has rational coeflicients, and in particular A is
discrete, and therefore is a lattice in R™. Since A contains A, it must
contain it as a subgroup of finite index, and since det M = +1, the
index is preserved by the action of M. Since A contains only finitely
many subgroups of a given index, there is a power of M preserving A,
as required. O

The following Corollary verifies the last statement of Theorem 4.8.

Corollary 4.10. Let HA be a closed orbit of the block group H =
H(P) and let Z = Z4 - Z, be the decomposition of Z = Z(P) given in
Proposition 3.4. Then, the number of summands in the decomposition
of the associated algebra as a direct sum of number fields Ax(P) = & F
satisfies dim Zg = r — 1.
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In particular, the following are equivalent:

(i) HA is of finite volume.
(i) Ax(P) is a field.
(i) ZA is compact.

Proof. Denote deg(F;/Q) = d;. By the part of Theorem 4.8 already
established, dim Z = dimZ; + dim Z, = [P| -1 = >""_,d; — 1. By
combining Proposition 4.9 and part (2) of Remark 3.7 we conclude
that dimZ, = > (dj — 1) = >>%_,d; — r. Combining these two
equalities we conclude that r = dim(Z;) — 1 as desired.

Finally, by Proposition 3.4 we know that the closed orbit HA is of
finite volume if and only if dim Z;, = 0, which, by the above reason-
ing, implies the equivalence of (i) and (ii) and shows that they imply
(iii). For the reverse implication (iii) == (i), note that if ZA is com-
pact then by Proposition 3.4(2), Z; must be trivial and therefore by
Proposition 3.4(1), HA is of finite volume.

O

5. CONSEQUENCES AND EXAMPLES

Proposition 3.2 and Theorem 4.8 furnish a link between the alge-
braic properties of intermediate lattices and the structure of their or-
bits under block groups. This sheds light on all possible A-invariant
homogeneous spaces. In this section we collect results in this direction,
and conclude with some examples.

Corollary 5.1. For any lattice A € L,,, the map B — H(Pg) is a bijec-
tive correspondence between the subalgebras of Ay, and the block groups
H for which HA is a closed orbit. Under this bijection subfields of Ax
correspond to finite volume orbits. The bijection is order-reversing for
the orderings of the corresponding sets by inclusion.

Proof. This follows from Theorem 4.2 and Corollary 4.6. U

In Corollary 5.1, the trivial algebra QQ corresponds to the block group
H = @ (the group with one block). Recalling Definition 1.5, we obtain:

Corollary 5.2. A lattice A € L,, is intermediate (resp. intermediate of
finite volume type) if and only if the associated algebra Ay is nontrivial
(resp. contains a subfield other than Q).

0
In the other extreme, for A = H(P,) we have the following Corollary
which explains the terminology in Definition 1.6.
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Corollary 5.3. A lattice A € L,, is an algebra lattice (resp. a number
field lattice) if and only if the associated algebra is n-dimensional over
Q (resp. is a field of degree n over Q).

The following Corollary recovers a result from [LW]. Note that by
Theorem 4.5 any field partition must be an equiblock partition; that
is, a partition into blocks of equal size.

Corollary 5.4 (See §6 in [LW]). If H = H(P) has a finite volume
orbit in L, then H is necessarily an equiblock group.

O
We now summarize the relation between subalgebras and partitions.
Given a lattice A we have defined two maps

P—Ax(P)

/—\

{partitions P} {subalgebras of A} (12)

\_/

Pp<+B

The image of the RHS in the LHS of (12) is the collection of algebra par-
titions which are those of dynamical interest, in light of Corollary 5.1.

Proposition 5.5. Let A be a lattice.

(1) Both maps in (12) respect the partial orderings of refinement
on the LHS and inclusion on the RHS.

(2) For any subalgebra B C Ax we have that B = Ax(Pg); that is,
going from the RHS to the LHS and back in (12) is the identity
map.

(3) In the other direction, for any partition P, if B = Ax(P) then
Pp s the finest algebra partition which is coarser than P.

We will not be using Proposition 5.5 and its proof is left to the
reader. U

5.1. Density properties. It is a well-known result of Prasad and
Raghunathan [PrRal, based on earlier work of Mostow, that the set
of compact A-orbits is dense in any fixed finite volume orbit HA of a
block group H. Our results imply the following related result:

Proposition 5.6. Let H; & Hy be two equiblock subgroups of G and
let Ay be an intermediate lattice such that both orbits H; Ay are homo-
geneous and of finite volume. Let P; denote the partition satisfying
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H;, = H(P;) and let K = Ap,(P1) be the subfield of the associated
algebra to Ay corresponding to Py by Corollary 5.1. Then the set

{A € HyAg : HiA is a homogeneous subspace and K = A (Px)}
18 dense in Hal\g.

Proof. Let Z = Z(P1). By Corollary 4.10, ZA is compact. Let [ be
the subgroup of H, fixing Ay, which is an arithmetic lattice in Hy. Let
H>(Q) denote the elements ¢ € Hy which are rational with respect to
the corresponding Q-structure, a dense subgroup of Hs (see [LW, Prop.
3.4] for more details). For each ¢ € Hy(Q), ¢I"g~" is commensurable
with IV, so the orbits ZAy and ZgAy share a common finite cover.
This implies that each ZgAq is also compact. Another application of
Corollary 4.10 shows that H;qAy is also a homogeneous subset of finite
volume. Moreover, for each ¢ € Ho(Q), Vi, = Vja,. This implies that
An, (Pr) = Agn, (Pk). So the set of lattices {gA¢ : ¢ € H2(Q)} has the
desired properties. O

5.2. Constructing intermediate lattices. Let B = ®7F}; be an n-
dimensional Q-algebra where the F}’s are totally real number fields of
degrees d; over Q respectively; so dimg B =Y d; =n. Let 0; : B —
R,i = 1...n be some enumeration of the n distinct homomorphisms
of B into the reals. More concretely, if we denote by 7;, : F; — R, k =

1,...,d; the various field embeddings of Fj into the reals, and view
each 7j; as a homomorphism from B to R, then oy,...,0, is some
enumeration of the 75, j =1,...,r,k =1,...,d;. Let v: B = R" be
the map

a = v(0) Y (o1(a), ..., on(e)) € R (13)

Let L be an additive subgroup of B of rank n. As B ®p R = R", the
group {v(a) : @« € L} is a lattice in R". Let
Ar¥ e {v(a)a e L}, (14)
where ¢y, is chosen so that A; has covolume 1 and so belongs to L,.
Lattices arising in this way have been studied by many authors (mainly
in the case where B is a field), see e.g. [GL, Chap. 1] or [PR, p. 54].
We refer to below to lattices of the form Ay as lattices arising via (14).
The following proposition gives an explicit construction of all algebra
lattices.

Proposition 5.7. (1) Let Ap be a lattice arising via (14) with L
a rank-n subgroup of the n-dimensional Q-algebra B as above.
Then the associated algebra Ay, is isomorphic to B. In partic-
ular, the orbit ANy, is closed and so consists of algebra lattices.
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(2) If A is an algebra lattice, then there is a lattice A arising
via (14) with A € AAp.

Proof. (1) The map v : B — R™ in (13) is Q-linear and also respects
multiplication in the sense that

v(a- p) = diag(o1(a), ..., on(a)) - v(B).

This means that V,, = cpv(B), and moreover that the map a +—
diag(oi(a),...,0,()) is an embedding of B into A,,. As B is n-
dimensional and Ay, is at most n-dimensional, the above map is an
isomorphism between B and A,,. By Corollary 5.3, Ay, is an algebra
lattice as desired.

(2) Let B = A,. By Corollary 5.3, B is n-dimensional. Choose a
vector w € A all of whose coordinates are positive and consider the
map ¢ : B — V) given by a — a - w. This map is clearly Q-linear and
injective. As V} is n-dimensional as well, it must be an isomorphism of

Q-vector spaces. Let Ldéfw_l(/\) C B. By Theorem 4.5, by projecting
B to the diagonal coordinates we obtain an ordering of all the various
homomorphisms of B into R. This way we obtain a map v : B — R"
as in (13), and the lattice A which arises via (14) satisfies Ay = a - A.
Here a is the diagonal matrix obtained by rescaling the diagonal matrix
diag(w;) to have determinant 1. Indeed a € A as we chose w so that

all of its coordinates are positive. 0

The following Corollary is a refined version of Proposition 3.4 (when
applied to a closed A-orbit) in conjunction with the concrete description
of algebra lattices given in Proposition 5.7 above.

Corollary 5.8. Suppose A is an algebra lattice. Then there is a de-
composition A =Ty x T, and a direct sum decomposition R" = @ V;
such that the following hold:

(i) Each V; is spanned by some of the standard basis vectors.

(i) T, is the group of diagonal (with respect to the standard basis)
matrices whose restriction to each V; has determinant 1.

(iii) T is the group of linear transformations which act on each V; by
a homothety, preserving Lebesque measure on R™. In particular
dimT, =r—1.

(iv) Tsx is divergent and Tyx is compact.

(v) Setting A; déf‘/} N A, each A; is a lattice in V;, so that @ A; is

of finite index in A.

Proof. Since our required conclusions are invariant when replacing A
with aA for a € A, by Proposition 5.7 we can assume that A = A,
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arises via (14). With the notation above, we set V; to be the span of
the standard basis vectors e; for which o; = 75, for k € {1,...,d,},
so (i) holds. Let P = Py, so that A = H(P) = Z(P). Let T, be the
Zarizki closure of the stabilizer Ay. By Proposition 4.9 T}, is contained
in the group T of diagonal matrices whose restriction to each V; has
determinant one. A dimension count using the Dirichlet unit theorem
now implies that T, = T, establishing (ii). Recalling Proposition 3.4
(and its proof) we have that T,A is compact and that if T is any choice
of a direct complement of T, in A, then TiA is divergent. Defining T}
by (iii), one obtains (iv). Since L generates B over Q, and since each
F; is the pre-image of V; under the map (13) and is a Q-subspace of
B, (v) holds. O

The following Proposition gives an explicit construction of all homo-
geneous A-invariant spaces in £,, (or equivalently, of all intermediate
lattices). It shows that each such homogeneous space H(P)A contains
an algebra lattice Ay arising via (14). Moreover, by Corollary 5.1,
the partition P must be the algebra partition that corresponds to the
subalgebra of A4, that we associate to the homogeneous space.

Proposition 5.9. Let HA be a closed orbit for the group H = H(P).
Then there exists a lattice Ay arising via (14) such that A € HAp. If
HA s of finite volume then Ap, can be taken to be a number field lattice.

Proof. By Proposition 3.4 (and its notation), we may present H as a
direct product H = Z, - Z, - S. Since S is a semisimple group defined

over Q, with respect to the Q-structure induced by A, Proposition 2.4

implies that the orbit SA is of finite volume. Let Ay 9N A By the

theorem of Prasad and Raghunathan [PrRa] the finite volume orbit
SA contains a lattice A’ with a compact Ag-orbit. By Remark 3.7(2)
we have that Z,A’ is compact as well and since Z, commutes with
Ay, the orbit Z,AgA’" is compact. Applying part (3) of Proposition 3.4
we deduce that the orbit Z,Z, AgA’ is closed but as A = Z,7, Ay we
conclude that A’ is an algebra lattice. Similarly, when HA is of finite
volume then AA’ is compact so A’ is a number field lattice. By Propo-
sition 5.7 we conclude that we may assume without loss of generality
that A’ = Ay is a lattice arising via (14). O

5.3. Indecomposable lattices.

Proposition 5.10. Let p be a finite A-invariant homogeneous mea-

sure. Then p-a.e. A is indecomposable. In particular k, € 1\//[En
(where K, is as in (5)).
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Proof. A decomposable lattice A = A; & Ay has nonzero vectors with
zero entries (namely those nonzero vectors in each A;, as embedded in
A). If the set of decomposable lattices had positive pu-measure, then
for some index iy, there would be a set of positive measure of lattices
A containing a vector whose ig-th coordinate vanishes. Assume to
simplify notation that ¢y = 1, then by Proposition 2.2, such lattices
have a divergent trajectory under the one parameter subgroup a; =
diag(e™ Dt et ..., e7') as t — oo. This contradicts the Poincaré
recurrence theorem, which asserts that with respect to an invariant
probability measure for an R-action, almost every point x returns to
any neighborhood of x along an unbounded infinite subsequence. [

5.4. Examples.

Example 5.11. Let A = Z", that is, A arises via (14) from the n-
dimensional Q-algebra B = Q™ and so Ay, = Q™. Moreover, for any
partition P, the subalgebra A, (P) consists of all diagonal matrices with
rational diagonal entries that are constant in each block of P and so
is a |P|-dimensional subalgebra of A,. By Corollary 4.6 any partition
P is an algebra partition; hence by Corollary 5.1, the orbit H(P)A is
closed for any block group H(P). Moreover, as Q™ does not have any
subfields other than @, all orbits H(P)A are of infinite volume, apart
from the orbit £,, which is obtained by choosing the trivial partition
that contains only one block, corresponding to the subfield Q.

Example 5.12. Let B = F| & F, be a 4-dimensional Q-algebra where
Fy = F, = Q(v/2). Denote by x — 2/ the nontrivial automorphism of
Q(v2). Let L = Op, ® Op, and define A = Ay, to be the lattice defined
by (14) where v(z,y) = (z,2',y,y’). Then

AL = CL{(.T,I'/,Z/,QI) ST,y € O@(\/ﬁ)}

is an algebra lattice with Fy @ F; = Aj. The isomorphism is given by
the map (z,y) — diag(z, 2, y,vy'). It is not hard to write down a table
of all subalgebras of A, and work out the corresponding algebra parti-
tions. This gives us a classification of all closed orbits of block groups
through A. For example if we take By = {diag(z,z,y,y) : x,y € Q} =
Q @ Q we obtain the algebra partition Py = {{1,2},{3,4}} for which
(by Corollary 5.1) the orbit H(P;)A is closed but of infinite volume
because Q @ Q is not a field. On the other hand, if we take By, =
{diag(z,2’,2,2') : * € Q(v/2)}, then we obtain the algebra partition
Py = {{1,3},{2,4}} for which H(P,)A is a closed orbit of finite vol-
ume as By = Q(v/2) is a field.
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6. STRICT INEQUALITIES AMONG THE Ky

We begin with a definition. Let ¢ : @72, F\” « @7 F\" be an
embedding of Q-algebras. We say that ¢ is essential if the image of
@ projects onto Fj(l) for any 1 < 7 < ry. Otherwise we refer to ¢ as
non-essential.

We can now state the main result of this section, which is one of the
main results of this paper.

Theorem 6.1. Let u;, i = 1,2 be two homogeneous A-invariant mea-
sures such that supp(u1) & supp(us). Let H; = H(P;) and A € L,, be
such that H;A = supp(p;). If the containment Ax(Pay) C Aa(Py) is
non-essential then Kk, < K, .

Deduction of Theorem 1.4. If uy is a finite measure then by Corol-
lary 5.1 the associated algebra to the orbit that supports pu, is a field. It
follows that the associated algebra to the orbit that supports ps must
be a field as well (because it is a subalgebra of a field) and therefore
[o must be a finite measure as well by another application of Corol-
lary 5.1. By Lemma 3.3, since H1A = supp(u1) C supp(pz) = HaA,
we have H; C Hy and since the containment between the orbits is
strict, we have Hy & H,. Therefore the containment of the associated
algebras is strict and so the containment is non-essential and Theo-
rem 6.1 applies. We therefore conclude that if p is a finite measure,
then k,, < k,, and Theorem 1.4 follows. U

Example 6.2. Continuing with Example 5.11, note that when we con-
sider the inclusion of closed orbits AZ"™ C GZ", the containment of the
associated algebras Q C @®7Q is essential and the conclusion of Theo-
rem 6.1 fails to hold as both of the generic constants attached to these
orbits are equal to 1.

Example 6.3. Let A be the lattice constructed in Example 5.12. In
the notation of that example we know that the orbits AA, H(P;)A,
H(P2)A, GA are all closed and their associated algebras are isomor-
phic respectively to Q(v/2) ®Q(v2), Q@ Q, Q(v/2), and Q. We denote
the generic values attached to these closed orbits by kg, k1, ko, kK3 TE-
spectively, so that k3 = k,, = 1. Because the inclusions Q — @(\/5),

Q@ Q — Q(v2) ®Q(+/2) are non-essential we deduce by Theorem 6.1
that ko < K3, K9 < k1. On the other hand, the inclusions Q — Q & Q,
Q(v2) = Q(v2) ® Q(+/2) are essential and so Theorem 6.1 does not
tell us that the inequalities k1 < K3, kg < Ko are strict. Indeed, it is
not hard to see that x; = 1 because the lattice Z* belongs to the orbit
H(P1)A (as A is the direct sum of two 2-dimensional lattices and the
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2 by 2 blocks of H(P;) act on each of the summands separately). We
do not know whether ko < k3. In fact we do not know an example of
a strict inequality between the r-values when the containment of the
associated algebras is essential.

The proof of Theorem 6.1 requires some preparations. Once again
let ¢ : @;2:1]7]-(2) — @51:1};}(1) be an embedding of Q-algebras. We say

that ¢ is aligned if ry = ry.

Proposition 6.4. Let HA be a closed orbit of H = H(P) and let
A € HA be the algebra lattice constructed in Proposition 5.9. Then

the inclusion Ay, (P) C Aa, is aligned.

Proof. As both orbits HAj, and AAj are closed, we may apply Propo-
sition 3.4 to both of them and obtain decompositions of Z(P) and A
respectively. Following the proof of Proposition 5.9 we see that the split
part in these decompositions may be chosen to be the same; indeed, in
the notation of Proposition 5.9, if Z = Z, - Z, is the decomposition for
Z = Z(P), then we saw that A = Z, - (Z, - (AN S)) and that A; was
chosen so that Z,(A N S)AL is compact. It now follows from Corol-
lary 4.10 that if we present the associated algebras to the orbits HAp,

ANy as Ay, = AT IS Ap, (P) = @ F® | then ry = ry. O

J J

6.1. The Kernel Lemma. We will need some more notation.

Definition 6.5. (1) Given a block group H = H(P) and a closed
orbit HA with associated algebra Ax(P) = @}_, F} such that
deg(F;/Q) = dj, we present P as in (10), P = U}_, '—'Zj:1 L.
Let

~ def | d, = . T
]j = Ukal Ijk and P = l—ljzllj;
that is, the j-th block of P is obtained by grouping the diagonal
coordinates that correspond to embeddings of Fj.
(2) Given a subset Q C {1,...,n}, we denote by g : R* — RI®l
the projection to the coordinates of the subset Q).

Lemma 6.6 (Kernel Lemma). Let HA C L, be a closed orbit of the
block group H = H(P). Let Q1,Q2 be two blocks of P that are con-
tained in the same block of the partition P from Definition 6.5. Then,
there is an automorphism p of C such that for any collection of vectors
vy, ..., 0 € A, we have the following connection between kernels of the
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n x t matrices whose columns are the g, (v;)’s

| | | |
ker TrQl(Ul) ﬂ—Ql(Ut) = p| ker 7TQ2(U1) 71-Qz(vt> )

where we let p act on R™ coordinate-wise.

(15)

Proof. Because of the block structure of H, the conclusion of the Lemma
is independent of the lattice we choose to consider within the orbit HA.
By Proposition 5.9 it is enough to assume that A = Ay is constructed
via (14) for some n-dimensional Q-algebra B and L C B. By Propo-
sition 5.7 we may assume that B = A,. Moreover, by the proof of
Proposition 5.7, the map that sends a diagonal matrix in A, to the
vector in R™ whose coordinates are the diagonal entries of the ma-
trix is a linear isomorphism?® between A, and V). This means that the
statement of the Lemma translates to a statement about the associated
algebra Aj,.

By Proposition 6.4, the containment A, (P) C A, is aligned. We
present Ay = @7_, Fj, Ax(P) = @j_, K; and note that the alignment
of the inclusion of the algebras means that we may assume that for
each 1 < j < r the field F} is an extension of K and the inclusion
Ar(P) C A, is induced from the natural inclusion @] K; C @1 F;.

By Theorem 4.5, as A, is n-dimensional, the diagonal coordinates
(or the coordinates of R™) are in one to one correspondence with the
various field embeddings of the fields F};. By the above discussion, the

blocks I; of P are obtained by grouping the coordinates that corre-
spond to each field F; together. As P is the algebra partition attached
to Aa(P) (see Definition 4.1 and Corollary 4.6), the blocks of P are
then obtained by further splitting each INJ according to the restriction
of the corresponding embedding of F; to the subfield K;. That is,
two coordinates that correspond to embeddings of Fj that restrict to
the same embedding of K, belong to the same block. As the group
of automorphisms of C acts transitively on the equivalence classes of
embeddings of F; with respect to the above equivalence relation, we

deduce that if ()1, Q)2 are two blocks of P that are contained in /;, then
there is an automorphism of C such that for each v € V) = A, we have

that mg, (v) = p(7g,(v)). From here (15) readily follows.
U

6.2. Strict inequalities for s values.

3The attentive reader will notice that V should be replaced with its dilation.
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Lemma 6.7. Let H{A C H>A be a containment of two closed orbits
where H; = H(P;), i = 1,2. If the containment Ax(P2) C Ax(P1)
is non-essential, then there is a block of Py that contains two distinct
blocks of Py that are contained in the same block of P;.

Lemma 6.7 together with the following Theorem implies the validity
of Theorem 6.1. We postpone the proof of Lemma 6.7 to the end of
this section.

Theorem 6.8. Let HiA C HyA be a containment of two closed orbits
where H; = H(P;), i = 1,2. Suppose that there is a block of Py that
contains two distinct blocks of Py that are contained in the same block

ofﬁl. Then k1 < Ko.

Proof. Assume by way of contradiction that kK, = ko. Without loss of
generality we may assume that A = A, is a lattice for which the con-
clusions of Theorem 3.1 are satisfied for the A-invariant set H;A; that
is, we assume that x(A) = max {k(A’) : A’ € H;A} and furthermore,
that the symmetric cube C of volume 2"k, is admissible for A. From
our assumption we deduce that also k(A) = max {k(A’) : A’ € HyA}.
In practice, the property of A that will be of importance to us is that
one cannot act on A with some h € H, in such a way that a symmetric
box of bigger volume will be admissible for hA.

For 1 < i < n we refer to the face of C that intersects the positive
i-th axis as the ¢-th face of C and denote it by F;. By symmetry there
will be no need to consider the opposite faces. We divide the rest of
the argument into steps.

Step 1. We first observe that for each 1 <7 < n the relative interior of
F; intersects A nontrivially. If not, we could have chosen an admissible
symmetric box for A which strictly contains C and in particular, is of

greater volume. We refer to the set LY ANAC as the set of locking
points and denote by L;, 1 < i < n the set of points in L that belong
to the relative interior of F;.

Step 2. Recall that for Q@ C {1,...,n}, mg : R* — RI€l is the projec-
tion to the coordinates of ). We observe that for each block @ of the
partition Py and for each iy € @,

0 € conv{mg i} (v) 1 v € Ly, }. (16)
In other words, if we restrict attention to the coordinates of the block
Q, then the point of intersection of F;, with the iy-th axis belongs to
the convex hull of locking points for the 7p-th face.

To prove (16), suppose to the contrary that 0 does not belong to
conv{7g (i} (v) : v € Ly, }. Then there is a linear functional f : RI®=1 —
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R which is strictly positive on {mgfi0}(v) : v € Li }. Define a one-
parameter unipotent subgroup {u;} of G by the formula

ut(v) =0V + tf<7TQ\{io}(U))eio7 (17)

where ey, ..., e, is the standard basis of R™. Since @) is a block of the
partition defining Hs, we have {u;} C H,. It follows from the definition
of uy and the positivity of fomg. (i) on Ly, that for small values of ¢ > 0
the cube C is admissible for u;A. Furthermore, u;A does not contain
points in the relative interior of F;,. Thus we may find a symmetric
box that strictly contains C and is admissible for u;A, contradicting
our assumption that x attains its maximal value on HyA at A.

Step 3. Now we apply the Kernel Lemma 6.6. Denote by @ a block of
P, that contains two distinct blocNks @1, Q2 of P such that both Q); are
contained in the same block of Py, the existence of which is assumed
in the statement. Let ig € Q1.

Let 6 > 0 be such that de;, is the point of intersection of Fj,
with the 7p-th axis. Because all the points of F;, share the same
ig-th coordinate, namely §, we deduce from (16) that mg(de;,) is in
the convex hull of mg(L;,). Choose vy,...,v; in L;, and a coeffi-
cients vector A = (A, ..o, A) with \; > 0 and Zi A; = 1 so that
S™ \img(v;) = mo(8ey,). In particular, as g ¢ Qs the vector X belongs
to the kernel of the n x ¢ matrix whose columns are the mg,(v;)’s.
Applying the Kernel Lemma 6.6 we deduce that there is an automor-
phism p of C so that p(X) belongs to the kernel of the corresponding
matrix with columns 7g, (v;). As p is an automorphism we deduce that
S p(\) = p(1) = 1. Looking at the iy coordinate we deduce that
0= p(\i)d =4, a contradiction.

O

Proof of Lemma 6.7. The associated algebras A (P), Aa(P2) are iso-

[a¥)

morphic to direct sums of number fields. Suppose A (P;) = EB;;le(l).
Then the inclusion Ay (Ps) C A (P;) induces an embedding

o @;2:11:}(2) < @;1:1]:’],(1)_

For such an embedding, there exists a partition {1,...,r1} = |_|;2’:1 Q;
such that for each 1 < j < ry there is an embedding ¢, : Fj(2) —
Sicq, I 1) 5o that ¢ takes the following form

)

e((z;)i21) = (e1(@1)), -5 ora (@) € (@iteﬂ(l)>@- : -@(@ieQwFfl))
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Our assumption that the embedding ¢ is non-essential simply means
that there exists some 1 < jo < rp and iy € )}, such that

deg (F{"/Q) > deg (F/Q) . (18)

Recall that by Theorem 4.5 the blocks of the partition Ps correspond to
the various embeddings of the Fj(Q). Choose a block @) that corresponds

to one of the embeddings of F}f).

This block splits into several blocks of the finer partition P; and this
splitting is done in two steps. First, it splits into blocks S;,i € @,
that correspond to the embedding ;, : FJ-(OQ) — Bicq,, Fi () and then

each block S; further splits into deg <F](01) /Q) / deg (FZ-(Q) /Q) blocks
S;¢ which are the blocks of P;. Following the definitions we see that for
each fixed i the blocks S;; belong to the same block of P;; namely the

one defined by Fi(l). Combining this with the inequality (18) concludes
the proof. O

7. PROOFS OF ISOLATION RESULTS

We recall the main dynamical result of [LW], which is the basis of
our proof of isolation results.

Theorem 7.1. Let n > 3, let HA be a finite-volume A-invariant ho-
mogeneous subspace of L,,, corresponding via Corollary 5.1 to a subfield
F of the associated algebra Ay. Assume that AN = HA and let (Ay,) be
a sequence of lattices in L, ~ HA converging to A. Then, after passing
to a subsequence of the (Ay), there is a proper subfield K & F' such that
the set of accumulation points of the form limaiAy, ar € A, is equal
to the finite-volume homogeneous space H'A, where H' is an equiblock
group associated to K wvia Corollary 5.1.

In particular, if F' has no proper subfields other than Q, then the set
of accumulation points as above is the entire space L,,.

Although the Theorem is not stated in this form in [LW], its state-
ment follows from the proofs of [LW, Theorems 1.1, 1.3]. We include
a proof for completeness. In the interest of brevity, along the way we

will refer the reader to the required definitions of statements from [LW].
See also [ELMV, Theorem 4.8].

Proof. Given a sequence (Ay)g, we denote by F((Ax)x) the set of accu-
mulation points of sequences ay Ay with a; € A. In light of the bijection
described in Corollary 5.1, it suffices to prove that there is a subse-
quence (A7) C (Ax) such that F((A});) = H'A is a finite-volume orbit
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where H’ is an equiblock group containing H as a proper subgroup.
Let o € HA be such that Axg is compact. Since there are only finitely
many equiblock groups H for which Hzxq is a finite-volume closed or-
bit, we may pass to a subsequence (which we continue to denote by

(Ag)), so that for each of these groups H, one of the following three
possibilities occurs:

(i) (Ap)r C Huzo.

(i) gfxo 7 F(Ar)e)-

From now on we write F = F((Ag)x). The assumption on the sequence
(Ag)x ensures that for H = H, (iii) occurs (regardless of our choice of
subsequence), and in particular Hxg C F. We will show that F = H'zg
is a finite volume orbit of an equiblock group H’ properly containing
H, and this will imply F = H'A and conclude the proof.

Let H be an equiblock group such that Hz is a finite-volume closed
orbit and (iii) holds, and let z € Hzy have a compact A-orbit. By
assumption (passing to a subsequence) there are ay € A such that the
sequence x = aplp ¢ Hz converges to z. Note that for each such
subsequence, F((xy)r) C F. Let the groups N;j, U;; be defined as in
[LW]. Then each N;; acts ergodically on Az by [LW, Step 6.1]. By
repeating verbatim the proof of [LW, Lemma 4.2], we find that there
exist indices 4,j (which may depend on z) such that U;; ¢ H and
Uijz C F. Now by [LW, Steps 4.7, 4.8], using F instead of F', we find

that there are indices i, (depending only on H ) such that U;; ¢ H

and Ungxo C F.

Let V' be a unipotent subgroup of G of maximal possible dimension,
which is normalized by A and such that Vo, C F. Using Ratner’s
theorem, Vo = Hizo and by [LW, Proof of Theorem 1.1], H' = AH,
is an equiblock group and H'xzq C F is closed and of finite volume.
Assume by contradiction that (iii) holds for H’. Then letting U;; be
such that U;;H'xy C F, U;; ¢ H' and arguing as in [LW, Step 4.9] we
obtain a contradiction to the maximality of V. This implies that H’
satisfies (i), and this in turn implies F = H'zy. Since Hry C F and
the groups H, H' are connected, we have H C H', and since H satisfies
(iii), this containment is proper. O

7.1. Proofs.
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Proof of Theorem 1.9. For each subfield Fy C F, by Corollary 5.1 there
is a corresponding homogeneous subset HA, equipped with a homoge-
neous measure fp, and by Theorem 3.1, a corresponding £, . Let

K min{r,, : F1 & F a subfield}.

Note that if F' has no proper subfields, the only possible F} is the field
Q, and in this case £’ = 1. Also note that by Theorem 1.4, k" > r(A).
We now claim that for any sequence Ay, — A, such that Ay ¢ AA,
we have liminf, k(Ay) > k’. Take a subsequence along which r(Ay)
converges. Applying Theorem 7.1 in the special case H = A, after
passing to a further subsequence we find that there is a subfield F} ¢ F
such that any lattice in H'A is an accumulation point of a sequence
of the form a,A,. Here H’ is the equiblock group corresponding to
F} under Corollary 5.1. In particular, we can choose A,.., a lattice
realizing the maximal value of k on the homogeneous subset H'A as in
Theorem 3.1, as a limit point of aAj. In view of Proposition 2.1,

K < k(Amax) < limk(apAy) = lim k(Ay).

Now to prove local isolation, note that Definition 1.8 is satisfied with

€0 W k(A). This also implies strong isolation when F' has no proper

subfields. It remains to show that A is not strongly isolated when F
does have a proper subfield F”. Indeed, in this case k" < 1 by Theorem
1.4. Letting H' denote the block group corresponding to F’, we find
from Theorem 3.1 that there is a dense collection of lattices A" € H'A,
for which x(A’) = «/. This means that A is not strongly isolated. [

Proof of Corollary 1.11. We first recall that for any n there is a totally
real number field F' of degree n without proper subfields. Indeed, by
[KM, Prop. 2|, for any n there is a totally real Galois extension K
of Q with Galois group §,, (the full permutation group of {1,...,n}).
The subgroup Gy = §,,_; fixing the element 1 is a maximal subgroup
of index n, so by the Galois correspondence, the subfield F' of K fixed
by Gy has the required properties.

Now let A be a number field lattice in R™ arising from such a field F
via the construction as in (14) of §5.2. By Theorem 1.9, A is strongly
isolated, and by Proposition 5.6 (applied to H; = A, Hy = (), the set
of number field lattices with associated field F' is dense in L,,. [

We now give a variant of Definition 1.8. Let A € £,, and let H C G
be a subgroup containing A. Given gg > 0, we say that A is eg-isolated

relative to H if for any 0 < £ < g( there is a neighborhood U of A in
L,, so that for any A" € U~ HA, k(A') > k(A) +¢e. We will say that A
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is locally isolated relative to H if it is gp-isolated relative to H for some
g > 0.

With this definition we prove the following result, of which Theorem
1.13 is a special case:

Theorem 7.2. Let o be a homogeneous A-invariant probability mea-
sure which corresponds to the homogeneous space HAg with A & H &
G. Then for any A € HAy for which AN = HAq (in particular, for u
-almost any A) the following assertions hold:

(1) A is not locally isolated.
(2) A is go-locally isolated relative to H, for

v is a homogeneous A-invariant probabilit
g p y} _ K(A)

def .
€0 = mln{l{'” * measure with supp(p)Gsupp(v)

Since there are only finitely many equiblock groups that contain
H, there are only finitely many measures v that can appear in the
minimum defining £y above. By Theorem 1.4 we see that indeed gy > 0.

Proof. Since A ¢ H, (1) is immediate from Theorem 3.1, taking a
sequence of generic elements in HA \ AA tending to A. The proof of
assertion (2) is identical to the proof of Theorem 1.9, except that in
applying Theorem 7.1, we use H in place of A. O

Proof of Theorem 1.14. By Proposition 5.9 there are number field lat-
tices in HA, and by Proposition 5.6 the collection of number field
lattices in HA is dense. Let Ag € HA be a lattice realizing the
generic value k, and choose Ay, — Ay a sequence of number field
lattices from within HA. On the one hand, by Theorems 3.1 and
1.4 we know that x(A;) < k,. On the other hand, by Proposition
2.1, liminfy, k(Ag) > k. It follows that the sequence x(Ay) converges
to Kk, and after possibly taking a subsequence, we may assume that
k(Ar) / k. Finally, by Proposition 5.10, these values belong to the
reduced Mordell-Gruber spectrum. 0

Proof of Theorem 1.16. Given t, let Q G Fy & --- & F} be a tower
of totally real fields, and let n = deg(F;/Q). Let A C £,, be a num-
ber field lattice corresponding to Fj, constructed via (14) for some
rank n subgroup L C F;. Then each of the F; is obtained as A, (7;)

for some partition P;, and by Corollary 5.1, the corresponding groups

HicﬁfH(Pi) satisty A = Hy & Hyw & -+ & Hi & G. For each

7, let H;A be the corresponding finite-volume homogeneous subspace.

Denote SL(V4) “an GL(Vy), i.e., the set of elements of G which

are rational with respect to the Q-structure induced by A. For each
q € SL(V}) and each i, the orbit H;gA is also a homogeneous subspace,
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since ¢ commensurates Stabg(A). Let k;(q) denote the generic value
of x, as in Theorem 3.1, on the homogeneous subspace H;qA. We will

show by induction that each r;_;(q) belongs to 1\7@:)

Suppose first that + = 1. Then each H;_1qA is a homogeneous sub-
space, which contains the compact A-orbits A¢’A, for all ¢ € SL(Vx)N
H;_1q. Since SL(V4) is a group and SL(V)) N H; is dense in each H;,
the set of such ¢ is dense in each H; 1q. Therefore, repeating the ar-
gument proving Theorem 1.14, we find that each x;_1(¢) is a limit of

an increasing sequence from 1\7[\G§lZ ). For the case of general ¢ we argue
in the same way, taking all ¢ € SL(V,) N H;_;11q, and using the values
of k corresponding to H;_;q'A to approximate the value H;_;,1qA. O

8. THE CASE n =2

For a lattice A C R", we denote

)\(A)déf inf{‘Hxi (X, T) GA\{O}}.

The following was proved in [G]:

Proposition 8.1 (Gruber). For a lattice A of dimension 2, k(A) <
1< A(A) > 0.

Remark 8.2. Using the results of the previous sections, it is not
hard to show that Gruber’s result is not valid for general n. Indeed,
Mahler’s compactness criterion (Proposition 2.2) implies that the con-
dition A(A) > 0 is equivalent to the boundedness of the A-orbit of A
in £,. Now let n be composite and let ;1 be a homogeneous measure
on L, supported on intermediate lattices which are not number field
lattices. In light of [LW, Step 6.3] and Proposition 3.6, for almost
any A € supp(u), AA is not bounded, so that A(A) = 0. However by
Theorem 1.4, k(A) < 1.

Proof of Theorem 1.12. Let A be a lattice in dimension 2, with x(A) <
1. We wish to show that it is not strongly isolated. In view of Proposi-
tion 8.1, we know that A(A) > 0, and it suffices to show that there is a
bounded A-orbit AAy which contains AA in its closure but is not equal
to AA. Since n = 2, the A-action is the geodesic flow on the unit tan-
gent bundle to the modular surface, and the existence of such orbits is
well-known using symbolic dynamics. More specifically, using the view-
point of [AF], for any lattice A € Lo, let a, w be two real numbers which
are endpoints of the infinite geodesic through a lift of the tangent vec-
tor corresponding to A in the upper half-plane. Since AA is bounded,
the continued fractions coefficients of the numbers «a,w are bounded,
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say by a number k. Denote these coefficients by o = [a_;,a_5,...] and
w = [ag, ay, as, ...]. Now let o k+1,k+1,...] and
/def
W = [a07 a—i,0ap,0a1,0-2,0_1,00,01,02,A_-3,0A_2, .. ]

That is, the bi-infinite word obtained by concatenating the expansions
of o and w is in the orbit-closure, under the shift, of the the bi-infinite
word obtained by concatenating the expansions of o/, w’.

In view of the symbolic coding of the geodesic flow [AF], the closure
of the projection in Ly of the geodesic with endpoints o', w’ contains
the projection of the geodesic with endpoints o, w. Since the digits of
o/ are greater than k, the two orbits are distinct. Since all digits of
o/, w' are bounded by k + 1, the corresponding A-orbit has k < 1. [

Theorem 1.14 concerns the existence of accumulation points for @n
besides 1, for n > 3. As we now explain, Proposition 8.1 can be used
to settle this question in dimension 2.

Proposition 8.3. The set MGy = 1\716‘:2 has accumulation points
smaller than 1.

Proof. Let Bad,, denote the set of real numbers z whose continued
fraction coefficients a;(x), as(z), ... are bounded above by k. Then it
is well-known that Uj>;Badj contains all real quadratic irrationals.
Given a real quadratic irrational z, let L = Z & Zx be an additive
subgroup in the corresponding quadratic field Q(x), and A = A(z) € L,
be the lattice in dimension 2, constructed via (14). Then, as is well-
known (and is a very special case of Corollary 4.10) the orbit AA(z)
is compact. The inequalities of [G] imply that a uniform bound on
the continued fraction coefficients of x imply a uniform bound on the
Mordell constant; in particular, for any k there is kg < 1 so that if
x € Bady, is a quadratic irrational, then x(A(z)) < k.

It is known that there is k such that Bady, contains a sequence (z,,) of

quadratic irrationals, for which the fields F), déf@(a:n) are distinct qua-

dratic fields. Indeed, as explained to the authors by Dmitry Kleinbock,
one can take k = 2. By [CF, Theorem 1.6], the quadratics in Bad,
are the numbers \/(3m — 2)(3m + 2)/m, and it follows from Dirich-
let’s theorem on primes in arithmetic progressions, that among these,
numbers belonging to infinitely many distinct fields arise.

For each n, as in Step 1 of Theorem 6.8, there are vgn),vén) which
are locking points for A(z,). Let o\™, ol be the two field embed-
dings of F,. After applying an element of A, we find by (14) that

there are o, 3, in F), such that v\") = (0@(&”), aén)(an)) and v\ =
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(UY%) (Bn)y Uén) (ﬂn)> , SO that

ki = w(A(20)) = 0" () - 057 (B).

Since ay,, B, span F,, they are linearly independent over Q. On the
other hand a§n)(an)0§n)(an) € Q. This implies that &, is irrational.
Since the k,, belong to distinct quadratic fields, they are therefore dis-
tinct. So the sequence (k,) is an infinite sequence in MGy, bounded

above by kg < 1. This implies that MG, has a limit point smaller
than 1. 0

Remark 8.4. 1. By a similar argument, in order to show that there
are infinitely many distinct accumulation points in MGs, it suffices
to construct infinitely many disjoint finite blocks of natural numbers
B,,, and for each n, an infinite sequence of quadratics in distinct fields,
whose continued fractions coefficients lie in B,,.

2. Nikolay Moshchevitin has directed our attention to the work of
B. Divi§ [D]. Divis studied the so-called ‘Dirichlet spectrum’, namely
he defined

. def

d(x) = igﬁ)pezf?é&l,qgtt lgz — p|, and D= {d(z):x € R},
and showed that D contains an interval and is not closed. The Dirichlet
spectrum can be interpreted in terms of the one-sided geodesic trajec-
tory {g:A, : t > 0}, where A, is the lattice spanned by (1,0) and (x, 1),
while the Mordell-Gruber spectrum can be interpreted in terms of the
full trajectory {g:A : t € R} of a lattice A. We suspect that the argu-
ments of Divis can be adapted to show that MGy contains an interval
and is not closed.
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