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Abstract. A conjecture of Woods from 1972 is disproved.

A lattice in Rd is called well-rounded if its shortest nonzero vectors
span Rd, is called unimodular if its covolume is equal to one, and the
covering radius of a lattice Λ is the least r such that Rd = Λ+Br, where
Br is the closed Euclidean ball of radius r. Let Nd denote the greatest
value of the covering radius over all well-rounded unimodular lattices
in Rd. In [Woo72], A. C. Woods conjectured that Nd =

√
d/2, i.e., that

the lattice Zd realizes the largest covering radius among well-rounded
unimodular lattices. Moreover, Woods proved this statement for d ≤
6. In [McM05], McMullen proved that Woods’s conjecture implies a
celebrated conjecture of Minkowski. Spurred by this result, Woods’s
conjecture has been proved for d ≤ 9 by Hans-Gill, Kathuria, Raka,
and Sehmi (see [KR] and references therein), thus yielding Minkowski’s
conjecture in those dimensions. In this note we prove:

Theorem. There is c > 0 such that Nd > c d√
log d

. For all d ≥ 30,

Nd >
√
d
2
.

Proof. Our examples will all be of the form

Λ = α1Λ1 ⊕ α2Zm

for some choices of Λ1, α1, α2,m. It will be more convenient to work
with the quantity C(Λ) = 4r(Λ)2, where r(Λ) is the covering radius
of Λ. Clearly C(αΛ) = α2C(Λ), and the Pythagorean theorem shows
that C(Λ1⊕Λ2) = C(Λ1) +C(Λ2). Let λ1(L) denote the length of the
shortest nonzero vector of L, and suppose Λ1,Λ2 are well-rounded. If
the αi satisfy λ1(α1Λ1) = λ1(α2Λ2), then α1Λ1⊕α2Λ2 is well-rounded.
Moreover, there is a unique choice of αi for which it is also unimodular.
Namely, if Λ1 is well-rounded and unimodular of dimension n, and
Λ2 = Zm, in order for Λ to be well-rounded and unimodular we must
take α1 = λ−

m
n+m and α2 = λ

n
n+m , where λ = λ1(Λ1). Thus

C(Λ) = C(Λ1)λ
− 2m

n+m +mλ
2n

n+m .
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For each d > 3, let m =
⌊

d
log d

⌋
, n = d−m. Let Λ1 be any lattice in

Rn for which λ1 is maximal, that is, Λ1 is a lattice giving the densest
lattice packing in dimension n. Although Λ1 is only known in very few
dimensions, it is a well-known result of Minkowski (see [GL87, Chapter
2] or [CS88, §1.1.5]) that there is c1 > 0 such that for all n,

λ = λ1(Λ1) ≥ c1
√
n.

Recall that a lattice L0 is called critical if the function L 7→ λ1(L),
considered as a function on the space of unimodular lattices, attains
a local maximum at L0. Then clearly Λ1 is critical, and a theorem
of Voronoi (whose proof is not difficult; see, e.g., [GL87, Chapter 6])
implies that Λ1 is well-rounded. Now let α1, α2 be the unique positive
numbers for which Λ = α1Λ1 ⊕ α2Zm is well-rounded and unimodular.
Then

C(Λ) ≥ mλ
2n

m+n ≥ c2mn
n
d ≥ c3

d2

log d

for positive c2, c3, and the first assertion follows.
Taking Λ1 to be the laminated lattice Λ15 (see [CS88, Chapter 6]),

we have C(Λ1) ≥ 14
5121/15

, λ = 2
5121/30

, n = 15 and so

C(Λ) ≥ 14

5121/15
·
(

2

5121/30

)− 2m
15+m

+m

(
2

5121/30

) 30
15+m

,

which is greater than d = m + 15 for all m ≥ 15. Note that Λ15

is generated by its shortest nonzero vectors and is in particular well-
rounded. See [CS88, Chapter 6] or [Bar58]. �

Remark 1. A similar construction with the Leech lattice will work
for d ≥ 38, with the 16-dimensional Barnes-Wall lattice will work for
d ≥ 33, and with the laminated lattice Λ23 will work for d ≥ 31. We are
grateful to M. Dutour-Sikirić for suggesting the use of the laminated
lattice Λ15 for this problem.
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