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Abstract. We study the dynamics of SL3(R) and its subgroups on the homogeneous
space X consisting of homothety classes of rank-2 discrete subgroups of R3. We focus on
the case where the acting group is Zariski dense in either SL3(R) or SO(2, 1)(R). Using
techniques of Benoist and Quint we prove that for a compactly supported probability
measure µ on SL3(R) whose support generates a group which is Zariski dense in SL3(R),
there exists a unique µ-stationary probability measure on X. When the Zariski closure is
SO(2, 1)(R) we establish a certain dichotomy regarding stationary measures and discover
a surprising phenomenon: The Poisson boundary can be embedded in X. The embedding
is of algebraic nature and raises many natural open problems. Furthermore, motivating
applications to questions in the geometry of numbers are discussed.

1. Introduction

1.1. A motivating conjecture. We begin by stating the conjecture which motivated this
paper and remains unsolved. Let X2 be the space of lattices in R2 identified up to scaling.
The quotient O2(R)\X2 of X2 by the action of the orthogonal group is thought of as the
space of shapes of 2-lattices. Given a rank-2 discrete subgroup Λ ⊂ R3 – hereafter known
as a 2-lattice – we define its shape s(Λ) to be the point of O2(R)\X2 corresponding to an
image of Λ in X2 obtained by choosing an arbitrary isometry between the plane spanned
by Λ and R2.

Conjecture 1.1. Consider the signature (2,1) quadratic form Q(v1, v2, v3) := 2v1v3 − v2
2

and the variety V 1
Q := {v ∈ R3 : Q(v) = 1}. Let V 1

Q(Z) := V 1
Q ∩ Z3 denote the collection of

integer points on V 1
Q. Then, the collection of orthogonal shapes

{s(Z3 ∩ v⊥) : v ∈ V 1
Q(Z)}

is dense in O2(R)\X2.

Currently it is not even known that the above set is unbounded. Conjecture 1.1 was
motivated by a conjecture of Furstenberg which is related to a conjecture about cubic
irrationals discussed in Appendix A (Conjecture A.3). Using duality it is easy to see that
Conjecture 1.1 would follow from the density of the collection {s(gΛv1) : g ∈ SO(Q)(Z)},
where Λv1 = Z3 ∩ v⊥1 for v1 = (1, 1, 1) ∈ V 1

Q(Z). See Figure 1 for compelling evidence
towards Conjecture 1.1. In our figures we plot some numerical experiments. Since the more
familiar space PSO2(R)\X2 is a double cover of O2 \X2, we lift the plots to this space.

Motivated by the above discussion, we can now present a corollary of one of our main
results. We consider the case where SO(Q)(Z) is replaced by a Zariski dense subgroup of
SL3(R).

Theorem 1.2. Let Γ < SL3(R) be a compactly generated Zariski dense subgroup and let
Λ < R3 be a rank-2 discrete subgroup. Then the collection of shapes {s(gΛ) : g ∈ Γ} is
dense in O2(R)\X2.
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Figure 1. Plot of ≈ 15, 000 points in PSL2(Z)\H ' PSO2(R)\X2 corre-
sponding to the shapes s(gΛv1) where g ∈ SO(Q)(Z) is chosen ‘randomly’.

Remark 1.3. A much stronger statement holds in the setting of Theorem 1.2. Let µ be a
compactly supported probability measure on SL3(R) such that the group generated by the sup-
port of µ is Γ. Then for µ⊗N-almost every (g1, g2, . . . ) ∈ SL3(R)N the sequence s(gn · · · g1Λ)
is equidistributed in O2(R)\X2 with respect to the uniform measure on O2(R)\X2.

Our attempt towards proving Conjecture 1.1 involves studying random walks on the
space of 2-lattices. We build heavily on results and ideas from the seminal series of pa-
pers of Benoist and Quint [BQ11,BQ12,BQ13a,BQ13b] and prove two classification results
regarding stationary measures on this space under assumptions on the acting group. Theo-
rem 1.2 is an immediate consequence of Theorem 1.6 which is a strong classification theorem
stating the uniqueness of a stationary probability measure – which we refer to as the natural
lift – under the assumption that the acting measure generates a group which is Zariski dense
in SL3(R). The analogous classification for the case when the Zariski closure is SO(Q)(R) is
weaker in the sense that sometimes there are stationary probability measures other than the
natural lift. This is the reason we could not establish Conjecture 1.1, but it is not unlikely
that further investigations of the structure of the space of ergodic µ-stationary probability
measures will lead to the resolution of Conjecture 1.1. See Problem 1.13.

1.2. Statements of results. For a topological space Y we let P(Y ) denote the space of
Borel probability measures on Y . For Gy Y a continuous action of a topological group G
and µ ∈ P(G) we let Pµ(Y ) be the subset of P(Y ) consisting of µ-stationary measures.

Henceforth we set
G := SL3(R)

and for µ ∈ P(G)
Γµ := 〈suppµ〉

will be the group generated by the support of µ. A measure ν ∈ Pµ(X) is said to be µ-
ergodic if the action of Γµ on (X, ν) is ergodic. It is a classical result of Furstenberg [Fur63b]
(see [BQ16, Chapter 4] for a modern exposition) that if Γµ acts strongly irreducibly and
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proximally on R3, then Pµ(Gr2(R3)) consists of a single element. We will refer to it as the
Furstenberg measure of µ on Gr2(R3) and denote it by ν̄Gr2(R3).

Remark 1.4. It will be important for us that the Furstenberg measure is atom free. This is
ensured by the strong irreducibility assumption, since if there was an atom of ν̄Gr2(R3) then
the set of atoms with maximal weight is a finite Γµ-invariant set.

We fix {e1, e2, e3} the standard orthonormal basis of unit vectors in R3. For v ∈ R3 and
1 ≤ i ≤ 3 we will write vi := 〈v, ei〉. As before we consider the indefinite quadratic form
Q : R3 → R defined by

Q(v) := 2v1v3 − v2
2. (1.1)

Let Hµ denote the Zariski closure of Γµ. In what follows we will concentrate on two cases
which will be referred to as Case I and Case II as follows:

Hµ = SL3(R) (Case I)

Hµ = SO(Q)(R). (Case II)

In both of these cases it follows from a theorem of Gol’dsheid and Margulis (see [Abe08,
Theorem 5.1] or [GM89]) that Γµ acts strongly irreducibly and proximally on R3. For the
rest of the paper X will be the space of rank-2 discrete subgroups in R3 identified up to
scaling. The linear G-action on R3 induces a transitive G-action on X endowing it with the
structure of a homogeneous space. There is a natural projection

π : X → Gr2(R3)

which sends an equivalence class of a 2-lattice to the plane it spans. We note that π is
G-equivariant.

Given a rank-2 discrete subgroup Λ ⊂ R3 we denote its equivalence class modulo scaling
by [Λ]. Abusing terminology we refer to both Λ and [Λ] as a 2-lattice and to X as the
space of 2-lattices in R3. For each plane p ∈ Gr2(R3) the fibre π−1(p) ∼= SL2(R)/ SL2(Z).
This identification is not canonical and depends on choosing a linear isomorphism between
p and R2. Still, the unique SL2(R)-invariant measure on SL2(R)/SL2(Z) translates to a
well defined probability measure mp ∈ P(π−1(p)).

Definition 1.5. Given a measure ν ∈ P(X) we can disintegrate ν with respect to the
map π. The result is a collection of measures {νp}p∈Gr2(R3) ⊂ P(π−1(p)) and a measure

ν̄ := π∗ν ∈ P(X) such that

ν =

∫
Gr2(R3)

νpdν̄ (p) ∈ P(X).

• When νp = mp for ν̄ almost any p ∈ Gr2(R3) we say that ν is the natural lift of ν̄.
• In contrast, if there exists k ∈ N such that νp is a uniform measure supported on a set of

size k for all p ∈ Gr2(R3), then we say that ν is a k-extension of ν̄.
• We will also say that ν is a finite extension of ν̄ if it is a k-extension of ν̄ for some k ∈ N

which we do not specify.
• We also recall that given µ ∈ P(G), ν is said to be a measure preserving extension of ν̄

if gνp = νgp for µ-almost every g ∈ G and ν̄-almost every p ∈ Gr2(R3).

Since π is G-equivariant, given µ ∈ P(G) and ν ∈ Pµ(X), the push-forward π∗ν belongs to
Pµ(Gr2(R3)). As noted earlier, we will only consider cases when Γµ acts strongly irreducibly
and proximally on R3 so we can conclude that π∗ν = ν̄Gr2(R3) is the Furstenberg measure.
Our main result regarding Case I is the following.
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Theorem 1.6. Let µ be a compactly supported measure whose support generates a Zariski
dense subgroup of G. Then the natural lift of the Furstenberg measure on Gr2(R3) is the
unique µ-stationary measure on X. Furthermore, for any x ∈ X we have that:

(1) The sequence 1
n

∑n
k=1 µ

∗k ∗ δx converges to the natural lift.

(2) For µ⊗N-almost every (g1, g2, . . . ) ∈ GN the sequence 1
n

∑n
k=1 δgk···g1x converges to the

natural lift.

The second part of Theorem 1.6 has the following immediate corollary.

Corollary 1.7. Let Γ be a finitely generated discrete Zariski dense subgroup of G. Then
the pre-image π−1(supp ν̄Gr2(R3)) is the unique Γ-minimal subset in X.

Note that a non-discrete Zariski dense subgroup of G is automatically dense in G and
thus the corollary is trivial for such groups because G acts transitively on X.

Theorem 1.6 should be compared with the main result of [BQ11] which is an analogous
statement. The reason that the results of Benoist and Quint fall short of being applicable
to our discussion is that X is not obtained as a quotient of a Lie group by a lattice but
rather by a closed group with non-trivial connected component.

In Case II we also have the following result.

Theorem 1.8. Let µ be a compactly supported probability measure on SO(Q)(R) satisfying
either one of the following:

(a) The group generated by the support of µ is discrete and Zariski dense in SO(Q)(R).
(b) The measure µ is absolutely continuous with respect to the Haar measure on SO(Q)(R)

and contains the identity in the interior of its support.

Then if ν is a µ-ergodic µ-stationary measure on X then either it is the natural lift or it is
a measure preserving finite extension of the Furstenberg measure on Gr2(R3).
Furthermore, for any x ∈ X we have that:

(1) Any weak-* accumulation point of the sequence 1
n

∑n
k=1 µ

∗k ∗ δx is a µ-stationary prob-
ability measure on X.

(2) For µ⊗N-almost every (g1, g2, . . . ) ∈ GN any weak-* accumulation point of the sequence
1
n

∑n
k=1 δgk···g1x is a µ-stationary probability measure.

Remark 1.9. In fact, in the proof of Theorem 1.8 we will see that in the case µ satisfies
assumption (b) the existence of a finite extension is excluded and the natural lift is the
unique µ-stationary measure. See the last paragraph of §4. This implies that the second
part of Theorem 1.8 yields a statement similar to Theorem 1.6.

In Theorem 1.8 the assumptions about the measure (a) and (b) are there to ensure that
(Gr2(R3), ν̄Gr2(R3)) is the Poisson boundary of (Γµ, µ) which is the actual assumption needed
for the part of the proof appearing in §4. See [Fur02, Theorem 2.17, Theorem 2.21] and
also [Fur63b, Theorem 5.3].

The existence of finite extensions is analogous to the existence of atomic stationary mea-
sures in the work of Benoist and Quint. It seems to us that in many cases the existence of
finite extensions can be excluded due to algebraic reasons.

The lack of uniqueness in the classification part of Theorem 1.8 is what makes the conclu-
sion regarding distributional properties of individual orbits weaker than that in Theorem 1.6.
It is not clear to us if one should expect individual orbits to equidistribute with respect to
a single ergodic stationary measure or not (see Problem 1.13).
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1.3. Embedding of the Poisson boundary in X. In this subsection we work under the
assumption that we are in Case II the quadratic form Q is as in equation (1.1) and we set
H = SO(Q)(R). For a long time we thought we could prove that the natural lift of the
Furstenberg measure is the unique µ-stationary measure in the setting of Theorem 1.8. As
Conjecture 1.1 follows from such a statement, we announced Conjecture 1.1 as a theorem
in several talks and research proposals. A gap in the proof was pointed out to us by
Lindenstrauss and after several failed attempts to close it we ran a computer experiment
and immediately found an example of a 1-extension (see Theorem 1.10). All the other
examples that we can find are obtained from this example by means of finite index and we
do not understand to what extent these objects are rare and what kind of structure they
possess. See Problem 1.13 and Remark 1.12. We now describe this simple example and
urge the reader to ponder it as we find it mind boggling.

In the following discussion and in Figure 3 we will use the notation:

u+(t) :=

1 t t2/2
0 1 t
0 0 1

, u−(t) :=

 1 0 0
t 1 0

t2/2 t 1

 and k :=

0 0 1
0 −1 0
1 0 0

.
Also, let u± := u±(2) and note that Γ0 := 〈u+, u−〉 is a finite index subgroup in the arith-
metic group SO(Q)(Z). Hence it follows from the Borel Harish-Chandra Theorem [BHC62]
and the fact that Q is defined over Q that Γ0 is a lattice in H. Let us denote also by
C ⊂ Gr2(R3) the circle of isotropic planes; that is, the set of planes p ∈ Gr2(R3) such that
there exists v ∈ pr {0} such that Q(v) = 0. Note that C is the unique H-invariant closed
minimal subset of Gr2(R3) and C = Hp0 where p0 := spanR({e1, e2}). Since StabH(p0) := P
is a minimal parabolic subgroup of H, one can also think of C as the full flag variety of H.
If µ ∈ P(H) is such that Γµ is Zariski dense in H then its Furstenberg measure is supported
on the circle of isotropic planes [BQ16, §4].

Theorem 1.10. There exists a continuous Γ0-equivariant section ζ : C → X (i.e. π(ζ(p)) =
p for all p ∈ C). In particular, if µ ∈ P(G) satisfies Γµ = Γ0, then ζ∗ν̄Gr2(R3) is a µ-

stationary 1-extension of the Furstenberg measure of µ on Gr2(R3).

Proof. For t ∈ R we define

Λt := spanZ({e1 + te2, e2 + 2te3}) and Λ∞ := spanZ({e2, 2e3}).

Note that limt→±∞[Λt] = [Λ∞] ∈ X. Consider the map ψ : R ∪ {∞} → X given by
ψ(t) = [Λt]. Let

g1 :=

(
1 0
2 1

)
and g2 :=

(
1 1
0 1

)
.

There is an action SL2(R) y R ∪ {∞} by fractional linear transformations, obtained by
identifying PR2 with R ∪ {∞}. We claim that

ψ◦g1 = u+◦ψ and ψ◦g2 = u−◦ψ. (1.2)

To show this we compute

u+[Λt] = [spanZ({(1 + 2t)e1 + te2, (2 + 4t)e1 + (1 + 4t)e2 + 2te3})]
= [spanZ({(1 + 2t)e1 + te2, (1 + 2t)e2 + 2te3})]
= [Λg1t]
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and

u−[Λt] = [spanZ({e1 + (2 + t)e2 + (2 + 2t)e3, e2 + (2 + 2t)e3})]
= [spanZ({e1 + (1 + t)e2, e2 + (2 + 2t)e3})]
= [Λg2t]

as required. Similar calculations also show that the above equalities hold true when t =∞
and so (1.2) is verified.

Since 〈g1, g2〉 is a lattice in SL2(R) its action on PR2 is minimal1 It follows from the
equivariance of π and (1.2) that π◦ψ(PR2) is a closed minimal Γ0-invariant set in Gr2(R3).
It is thus equal to C since the latter is the unique such set. Moreover, it is straightforward to
check that π◦ψ is 1-1 which shows that there exists a continuous inverse (π◦ψ)−1 : C → PR2.
We then define ζ := ψ◦(π◦ψ)−1 : C → X and note that from what we established so far it
is clear that ζ is a Γ0-equivariant. �

Remark 1.11. The remarkable feature of the section ζ from Theorem 1.10 is that it is

Γ0-equivariant and not H-equivariant. Its image C̃ := ζ(C) is a Γ0-invariant circle which
intersects each fibre above the circle of isotropic planes in a single 2-lattice. See Figure 2 for

an illustration of the (lift of the) projection of C̃ to PSO2(R)\X2. Since H acts minimally

on π−1(C), C̃ is not H-invariant. This minimality is one of the reasons we did not expect
the existence of the section ζ.

Remark 1.12. After presenting the above example to Uri Bader, he managed to explain it
in a conceptual manner. It seems likely that his insights could be used to resolve some of
the problems presented in this paper. We expect this to be the subject of future work.

Figure 2. Plot of the (lift of the) projection of the Γ0-invariant set C̃ =
ζ(C) ⊂ X in PSL2(Z)\H ' PSO2(R)\X2.

As this introduction is quite long, we do not dwell on the comparison between the re-
sults here and similar classification results of stationary measures on homogeneous spaces.
Nevertheless, this comparison is essential if one wishes to shape a reasonable set of ex-
pectations regarding stationary measures and closed invariant sets of semisimple groups
acting on spaces such as X. In particular, in the case where the acting measure gener-
ates a Zariski dense subgroup in a semisimple group, one should compare our results with

1This follows (for instance) from that fact that any parabolic subgroup of SL2(R) acts minimally on
SL2(R)/Γ, for every lattice Γ in SL2(R). See for example [DR80, Proposition 1.5].
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the seminal works of Benoist and Quint [BQ11, BQ13b, BQ12, BQ13a], Eskin and Mar-
gulis [EM04], Bourgain-Furman-Lindenstrauss-Mozes [BFLM11] and [EM13]. See also Sim-
mons and Weiss [SW16] for results pertaining to non-semisimple Zariski closures. Compare
also, the more classical results regarding measures on projective spaces originating from the
seminal work of Furstenberg [Fur63a,Fur71], Furstenberg-Kesten [FK60] and Furstenberg-
Kifer [FK83]. For potential applications of such classification results see [SW16]. In the
opposite case when the acting measure has certain smoothness properties one can juxtapose
our results with those of Nevo and Zimmer [NZ02b,NZ02a].

We wish to stress, as this cannot be stressed enough, that we follow closely the exposition
and methods developed in [BQ13b]. Our main work was to overcome technical difficulties
arising from the fact that X is obtained as a quotient by a group with a non-trivial con-
nected component. Other than that we mainly needed to downgrade the generality of their
discussion and hopefully maintain the quality of presentation.

In future work we plan to generalise the results of this paper and analyse actions of
discrete groups on spaces with features similar to X. These include the space of homothety
classes of lattices in k-planes in Rn but more generally bundles over projective spaces with
fibres obtained as quotients of a Lie group by a lattice.

We conclude this introduction by stating some natural open problems and presenting
figures pertaining to Case II.

Problem 1.13. Let µ ∈ P(H) be a finitely supported measure such that Γµ is Zariski dense
in H = SO(Q)(R).

(1) Is it true that if Γµ is dense in H, or if Γµ is cocompact in H, then the natural lift of
the Furstenberg measure is the unique µ-stationary measure on X?

(2) If ki is a sequence of natural numbers such that ki →∞ and νi ∈ P(X) is a µ-stationary
ki-extension of the Furstenberg measure on Gr2(R3) is it true that νi converges to the
natural lift of the Furstenberg measure?

(3) For x ∈ X, does the set of accumulation points Γµx r Γµx of the orbit Γµx support a
µ-ergodic µ-stationary probability measure?

(4) Is it true that for any x ∈ X the sequence 1
n

∑n
k=1 µ

∗k ∗ δx converges to a µ-ergodic
µ-stationary probability measure?

(5) Is it true that for any x ∈ X and µ⊗N-almost every (g1, g2, . . . ) ∈ GN that the sequence
1
n

∑n
k=1 δgk···g1x converges to a µ-ergodic µ-stationary probability measure?

(6) Is it true that if ν is a µ-ergodic µ-stationary probability measure on X which is a k-

extension of ν̄Gr2(R3), then there exists a copy of the circle C̃ ⊂ X such that π : C̃ → C
is a covering map of degree k and ν(C̃) = 1?

Acknowledgments. We would like to express our gratitude to Elon Lindenstrauss for
correcting a mistake in an earlier draft. We would also like to thank Uri Bader, Yves
Benoist, Alex Eskin, Alex Furman, Elon Lindenstrauss, Amos Nevo, Jean-François Quint,
Ron Rosenthal, Nicolas de Saxcé, Barak Weiss and Cheng Zheng for their support encour-
agement and assistance. We acknowledge the support of ISF grant 357/13 and the warm
hospitality and splendid environment provided by MSRI where some of the research was
conducted during the special semester Geometric and Arithmetic Aspects of Homogeneous
Dynamics held on 2015.

2. Generalities

Throughout the paper µ ∈ P(G) is compactly generated, Γ := 〈suppµ〉 is the group
generated by its support and H is the Zariski closure of Γ. Furthermore, we assume we are
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(a) Γ = 〈u+(2), u−(1)〉 (b) Γ = 〈u+(1), u−(2)〉

(c) Γ = 〈u+(2), u−(1), k〉 (d) Γ = 〈u+(1), u−(1)〉

Figure 3. Plots in PSL2(Z)\H of the projections of random points in the
Γ-orbit of [Λ0] for various choices of Γ.

either in Case I or Case II. Given k, l ∈ N with k < l and elements bk, . . . , bl ∈ G we use
the following notation to denote products

blk := bk · · · bl and bkl := bl · · · bk.

2.1. A restatement and the structure of the paper. For convenience of reference we
aim to state a unified theorem whose statement captures both Theorem 1.6 and Theorem 1.8.
In order to do so we need to define some more objects. For details regarding the following
facts we refer the reader to [BQ16, §2.5]. Let A := suppµ and B := AN be the space of
infinite sequences indexed by the positive integers. Let β := µ⊗N be the Bernoulli measure
and S : B → B be the shift map Sb = (b2, b3, . . . ), where b = (b1, b2, . . . ). Given ν ∈ Pµ(X)
it is well known that for β-almost every b ∈ B the sequence bn1ν converges to a probability
measure denoted νb known as the limit measure of ν with respect to b. Hence, the map
b 7→ νb is almost surely well defined and equivariant in the sense that νb = b1νSb for β-almost
every b ∈ B. Moreover, one can recover the measure ν by integrating

ν =

∫
B
νbdβ (b) .

The following theorem is our unified statement and the reader can readily check that The-
orems 1.6 and 1.8 follow from it.

Theorem 2.1. Let µ ∈ P(G) be a compactly supported measure and suppose we are in Case
I or Case II. Let ν ∈ Pµ(X) be µ-ergodic.

(a) If for β-almost every b ∈ B the limit measure νb is non-atomic, then ν is the natural
lift of the Furstenberg measure of µ on Gr2(R3).

(b) In Case I it holds that for β-almost every b ∈ B the limit measure νb is non-atomic.



9

(c) In Case II, if it does not hold that for β-almost every b ∈ B the measure νb is non-atomic
and if Γ is discrete or if µ is absolutely continuous with respect to the Haar measure on
H and contains the identity in the interior of its support, then ν is a measure preserving
finite extension of the Furstenberg measure of µ on Gr2(R3).

(d) In both Case I and Case II for any x ∈ X, any weak-* limit point of the sequence
1
n

∑n
k=1 µ

∗k ∗ δx is an element of Pµ(X). Moreover, for β-almost every b ∈ B any

weak-* accumulation point of the sequence 1
n

∑n
k=1 δb1kx

is an element of Pµ(X).

The rest of the paper is devoted to the proof of Theorem 2.1. In the rest of §2 we collect
notation and results needed for the rest of the paper.

We establish part (a) of Theorem 2.1 in §3 by means of the so called exponential drift
argument of Benoist and Quint.

We establish part (c) of Theorem 2.1 in §4. To do this we will use a result of Ledrap-
pier [Led85] that in this case the measure space (Gr2(R3), ν̄Gr2(R3)) is the Poisson boundary
of (Γ, µ). We note that part (c) of the theorem must be taken into account in conjunction
with Theorem 1.10 which says that this possibility is not vacuous.

We establish part (d) of Theorem 2.1 at the end of §5. Given the analysis of Benoist
and Quint [BQ13a] the proof boils down to a non-escape of mass result which is proved in
§5. The aim is to show that a certain function on X, which can be thought of as a height
function, tends to be contracted by the random walk. This will enable us to prove that the
‘cusp’ in X is ‘unstable’ with respect to the action induced by µ.

Finally we establish part (b) of Theorem 2.1 in §6 using an argument which was developed
by Benoist and Quint in [BQ13b]. The main point is to show that the diagonal in X ×X
is ‘unstable’.

2.2. The boundary map and other equivariant maps. When studying µ-stationary
probability measures one is naturally led to consider equivariant maps ζ : B → Y for various
spaces Y on which Γ acts. Here equivariant means that for β-almost every b ∈ B one has
ζ(b) = b1ζ(Sb). The reason for this is that given such an equivariant map, the measure
ν = ζ∗β belongs to Pµ(Y ) and the limit measures νb are equal to δζ(b) for β-almost every
b ∈ B.

In order to proceed we must choose a minimal parabolic subgroup of H. In both Case I
and Case II the subgroup of H consisting of upper triangular elements is a minimal parabolic
subgroup of H. We will denote this subgroup by P . By [BQ16, Proposition 10.1] the set
Pµ(H/P ) consists of a single measure and it is µ-proximal. This implies that there is a
unique measurable equivariant map

ξ : B → H/P

which is referred to as the boundary map.
The mechanism giving rise to the equivariant maps we will consider is as follows: Let V

be a representation of H. If W0 ⊆ V is a subspace of dimension d which is P -invariant then
there is a well defined H-equivariant map H/P → Grd(V ) defined by

hP 7→ hW0.

For η ∈ H/P we then denote the image of η by Wη. In turn, the composition of this map
with ξ gives rise to an equivariant map B → Grd(V ) given by

b 7→Wξ(b)

for β-almost every b ∈ B. Hence, for β-almost every b ∈ B we define Wb := Wξ(b).



10

For example, consider the representation ofH on R3. As in §1.3, let p0 := spanR({e1, e2}) ∈
Gr2(R3). In both Case I and Case II p0 is P -invariant and therefore one obtains an equi-
variant map H/P → Gr2(R3) given by

η 7→ ηp0 =: pη.

Using this map in conjunction with ξ as described above gives rise to the equivariant map
B → Gr2(R3) given by

b 7→ pξ(b) =: pb.

Hence, the push-forward of β under b 7→ pb is a µ-stationary probability measure on
Gr2(R3). Since the Furstenberg measure ν̄Gr2(R3) is the unique such measure, we deduce
that (ν̄Gr2(R3))b = δpb for all β-almost every b ∈ B. This implies the following proposition
which constitutes the first step towards classifying the µ-stationary measures on X.

Proposition 2.2. Let ν ∈ Pµ(X). Then, for β-almost every b ∈ B we have νb(π
−1(pb)) = 1.

Proof. Since π is H-equivariant we have that π∗ν ∈ Pµ(Gr2(R3)). Since the Furstenberg
measure ν̄Gr2(R3) is the unique measure in Pµ(Gr2(R3)) we deduce that π∗ν = ν̄Gr2(R3).
Furthermore, it follows that π∗νb = (ν̄Gr2(R3))b for β-almost every b ∈ B. As we observed
above, (ν̄Gr2(R3))b = δpb for β-almost every b ∈ B and the statement follows. �

Next we define some subgroups of G. Let G0 := StabG(p0) and R0 be the solvable radical
of G0. Since P < G0 and R0 is a normal subgroup of G0 it is clear that R0 is invariant
under conjugation by P . Moreover,

L0 :=


α ∗ ∗

0 α ∗
0 0 α−2

 : α ∈ R×
 ⊃ R0

is also easily seen to be invariant under conjugation by P . The P -invariance of these
subgroups allows us to define equivariant maps from H/P to the set of subgroups of G. In
other words, the maps

hP 7→ hR0h
−1, hP 7→ hL0h

−1 and hP 7→ hG0h
−1

are well defined. As before, for η ∈ H/P we let Rη, Lη and Gη denote the images of these
maps. Combined with the map ξ, these maps allow us to define equivariant maps from B
to the set of subgroups of G. These maps are given explicitly as

b 7→ Rb := Rξ(b), b 7→ Lb := Lξ(b) and b 7→ Gb := Gξ(b).

Later on we will use corresponding lower case Gothic letters to denote the Lie algebras. As
R0 is normal in L0 we may define the 1-parameter unipotent quotient group U0 := L0/R0.
Similarly for any η ∈ H/P we define the 1-parameter unipotent quotient group

Uη := Lη/Rη.

This assignment is clearly equivariant and again for b ∈ B we will use the notation

Ub := Uξ(b). (2.1)

It is straightforward to check that Gb = StabG(pb). Moreover, Rb acts trivially on pb. It
follows that the action of Ub on pb is well defined and nontrivial for β-almost every b ∈ B.
The crucial point for us is that this action descends to a nontrivial action of Ub on π−1(pb).
The main step in the proof of Theorem 2.1(a) is to show that if ν ∈ Pµ(X) is µ-ergodic
and the limit measures νb are non-atomic almost surely, then for β-almost every b, νb is
Ub-invariant. In the following subsection we show that this unipotent invariance implies
that ν is the natural lift of ν̄Gr2(R3).
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2.3. Reduction of the proof of Theorem 2.1(a). The core of the proof of Theo-
rem 2.1(a) is an application of the exponential drift argument of Benoist and Quint. This
is an elaborate argument which takes quite a lot of apparatus. In this section we isolate
the following lemma whose statement does not require any preparation and relying on this
lemma we prove a proposition which reduces the proof of Theorem 2.1(a) to establishing
the β-almost sure Ub-invariance of the limit measures νb.

Lemma 2.3. Let µ ∈ P(G) be compactly supported and suppose Case I or Case II holds.
Then for any δ > 0 and R > 0 there exists n0 > 0 such that for any v ∈ R3 r {0},
w ∈ ∧2R3 r {0} and n > n0 one has

β

({
b ∈ B :

‖bn1v‖
‖bn1w‖

1/2
< R

})
< δ.

The statement of Lemma 2.3 and its use in the proof of Proposition 2.4 illustrates in
a simple fashion the role played by comparison of growth rates of vectors under random
products in various representations, which is a recurring theme in the paper. We note that
the proof of Lemma 2.3 will only be given in §2.4 after the necessary notation and tools
regarding Lyapunov exponents will be presented. During the proof of Proposition 2.4 we
will need to use the following construction. Let

BX := B ×X, βX :=

∫
B
δb ⊗ νbdβ (b) (2.2)

and T : BX → BX be defined by T (b, x) := (Sb, b−1
1 x). If ν ∈ Pµ(X) then T preserves βX

and if ν is assumed to be µ-ergodic then T is ergodic. Following Benoist and Quint, we will
call the system (BX , T, βX) the backwards dynamical system, see [BQ16, §2.5].

Proposition 2.4. Let ν ∈ Pµ(X) be µ-ergodic. Suppose that for β-almost every b ∈ B
the limit measure νb is Ub-invariant, where Ub is as in (2.1). Then ν is the natural lift of
ν̄Gr2(R3).

Proof. Below we will show that the almost sure Ub-invariance of the νb’s together with
Lemma 2.3 imply that νb = mpb for β-almost every b ∈ B. This will finish the proof
because

ν =

∫
B
νbdβ (b) =

∫
B
mpbdβ (b) =

∫
Gr2(R3)

mpdν̄Gr2(R3) (p) ,

where the last equality follows because the Furstenberg measure ν̄Gr2(R3) is the pushforward
of β under b 7→ pb.

Assume that νb is Ub-invariant β-almost surely. By Proposition 2.2, νb is supported on
π−1(pb) for β-almost every b ∈ B. The classification of Ub-invariant measures on π−1(pb)
due to Dani [Dan78, Theorem A] (see also [Rat91]) implies that νb = tbmb + (1− tb)ηb for
some 0 ≤ tb ≤ 1, where ηb is a Ub-invariant measure supported on the collection of periodic
Ub-orbits in π−1(pb). The equivariance of the νb’s and the mb’s imply the equivariance of
the ηb’s which in turn implies that tb = tSb for β-almost every b ∈ B. The ergodicity of
the shift map implies that tb = t is β-almost surely constant and then the ergodicity of ν
implies that either t = 0 or t = 1. We assume that t = 0; that is that β-almost surely νb
is supported purely on periodic Ub-orbits and derive a contradiction. This assumption may
be restated in the backwards dynamical system as follows: Let

Σ := {(b, [Λ]) ∈ BX : [Λ] ∈ π−1(pb), and Ub[Λ] is periodic}.

Our assumption that t = 0 implies that βX(Σ) = 1.
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For a 2-lattice Λ we let |Λ| denote the covolume of Λ. Recall that a 2-lattice [Λ] ∈ π−1(pb)
has a periodic Ub-orbit if and only if Λ intersects the eigenline `b of Ub in the plane pb non-
trivially. Therefore, the function

ρ : Σ→ (0,∞), given by ρ(b, [Λ]) :=
|Λ ∩ `p|
|Λ|1/2

is well defined βX -almost surely. Choose R > 0 so that the pre-image ΣR := ρ−1((0, R))
satisfies βX(ΣR) > 1/2.

Note that, if (b, [Λ]) ∈ Σ, then choosing a primitive vector v ∈ Λ ∩ `b and a basis u1, u2

of Λ, if we set w = u1 ∧ u2 ∈ ∧2R3 then we have that

ρ(b, [Λ]) =
‖v‖
‖w‖1/2

.

It follows from the equivariance that for µ⊗n-almost every a ∈ Gn and βX -almost every
(b, [Λ]) ∈ Σ we have `ab = an1 `b and so an1v is a primitive vector in `ab∩an1 Λ and an1ui, i = 1, 2
is a basis for an1 Λ. We conclude that

ρ(ab, an1 [Λ]) =
‖an1v‖
‖an1w‖

1/2
. (2.3)

Consider the operator A defined by

A f(b, [Λ]) :=

∫
G
f(gb, g[Λ])dµ (g) for f : BX → [0,∞) measurable.

We take f := 1ΣR . Lemma 2.3 and (2.3) imply that for βX -almost every (b, [Λ]) ∈ Σ we
have

lim
n→∞

An f(b, [Λ]) = lim
n→∞

∫
Gn

1ΣR(ab, an1 [Λ])dµ⊗n (a) = 0. (2.4)

It is easy to check that the operator A preserves the measure βX . Hence for any n ∈ N we
have

1/2 ≤
∫
B×X

1ΣRdβX =

∫
B×X

An 1ΣRdβX .

But on the other hand using (2.4) and Lebesgue’s dominated convergence theorem we see
that the right hand side of the above equation tends to 0, which is a contradiction as
required. �

2.4. The Iwasawa cocycle. Let H be as in Case I or Case II and let H = KP be an
Iwasawa decomposition of H where P is as in §2.2 and K is the maximal compact subgroup
of H corresponding to the inner product coming from the standard basis {e1, e2, e3}. Let z
be the maximal abelian subspace of the Lie algebra of P and define Z = {exp (z) : z ∈ z}
to be the corresponding Cartan subgroup of H. We denote by log : Z → z the inverse of
exp. Moreover, we set N to be the unipotent radical of P so that P = ZN . See [Kna02]
for details.

Let s : H/P → H/N be a measurable section with image in KN . For h ∈ H and
η ∈ H/P let α : H ×H/P → Z be defined so that α (h, η) is the unique element of Z such
that

hs (η) = s (hη)α (h, η) . (2.5)
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Note that since Z normalises N it acts on H/N from the right and moreover this action is
transitive with trivial stabilisers, so equation (2.5) makes sense and defines α(h, η) uniquely.
The Iwasawa cocycle is the map

σ(h, η) := logα(h, η).

Indeed, it is not hard to see from (2.5) that the cocycle relations α(gh, η) = α(g, hη)α(h, η),
σ(gh, η) = σ(g, hη) + σ(h, η) hold. See [BQ16, §8.2] for details.

Let E : B → Z be given by
E(b) := α(b1, ξ(Sb))

and for n ∈ N let En(b) : B → Z be

En(b) :=
n∏
i=1

E(Si−1b) = α(bn1 , ξ(S
nb)).

Additionally, we define the corresponding logarithmic versions L : B → z and Ln : B → z
as

L(b) := log E(b) and Ln(b) := log En(b).

Let V be a finite dimensional representation of H and let Wz (V ) be the set of weights of V
relative to z. For ω ∈ Wz (V ) we will use V ω to denote the corresponding weight space. Let
Hz (V ) be the set of highest weights of the representation V . For ω ∈ Hz (V ) we write V [ω]
for the corresponding isotypic component. Note that (V [ω])ω is P -invariant and pointwise
fixed by N .

By the discussion in §2.2, the P -invariant subspace (V [ω])ω gives rise to an equivariant
map from H/P to the set of subspaces of V given by

gP 7→ g(V [ω])ω.

To reduce the notational clutter, for η = gP ∈ H/P we simplify the notation to

Vη [ω] := g (V [ω])ω .

For b ∈ B we will also use the notation

Vb [ω] := Vξ(b) [ω] .

For ω ∈ Wz (V ), let χω : Z → R× be the character corresponding to the weight ω, that is

χω := exp ◦ω◦ log .

We will use the following lemma on multiple occasions. It is the same as [BQ11, Lemma
5.4] except that we replaced “irreducible representation” by “isotypic component”.

Lemma 2.5. Suppose V is a representation of G. Then, for β-almost every b ∈ B and for
all n ∈ N, ω ∈ Hz (V ) and v ∈ VSnb [ω] we have

χω(En(b)) = ‖bn1v‖/‖v‖.

2.5. The Lyapunov vector and pairs of highest weights. Our choice of P in §2.2
implies that z consists of diagonal traceless matrices. Let z+ be the Weyl chamber associated
with P and z++ denote its interior.

• In Case I we have z++ = {diag (t1, t2, t3) ∈ z : t1 > t2 > t3}.
• In Case II we have z++ = {diag (t, 0,−t) ∈ z : t > 0}.
To keep a unified treatment we will denote elements in z++ by diag (t1, t2, t3) and use the
inequalities t1 > t2 > t3 which are valid in both cases. The following theorem is a collection
of relevant statements regarding the Lyapunov vector of µ. In [BQ16] this collection of
statements is referred to as “the law of large numbers on H”.
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Theorem 2.6. Let

σµ :=

∫
H×H/P

σdµdν̄H/P ,

where ν̄H/P ∈ Pµ(H/P ) is the unique µ-stationary probability measure on H/P . Then:

(1) [BQ16, Theorem 10.9(a)] The Iwasawa cocycle σ is integrable and hence σµ ∈ z is well
defined.

(2) [BQ16, Theorem 10.9(a)] For β-almost every b ∈ B we have limn→∞
1
n Ln(b) = σµ.

(3) [BQ16, Theorem 4.28(b) + Corollary 10.12] If V is an irreducible representation of H
with highest weight ω, then for all v ∈ V r {0} and for β-almost every b ∈ B one has

lim
n→∞

1

n
log
‖b1nv‖
‖v‖

= ω(σµ).

This sequence also converges in L1(B, β) uniformly over v ∈ V r {0}.
(4) [BQ16, Theorem 10.9(f)] One has σµ ∈ z++. In particular, if ω is a positive weight,

then ω(σµ) > 0.

The vector σµ defined in Theorem 2.6 is called the Lyapunov vector of µ.
There are two pairs of highest weights which play a prominent role in our discussion.

The first pair consists of the highest weights of the irreducible representations of H on R3

and on ∧2R3 which we denote by ωR3 and ω∧2R3 respectively. The important fact regarding
this pair is that for t = diag (t1, t2, t3) ∈ z we have ωR3(t) = t1 and ω∧2R3(t) = t1 + t2 so
that (ωR3 − 1

2ω∧2R3)(t) = 1
2(t1 − t2) and so ωR3 − 1

2ω∧2R3 is positive. Thus, by part (4) of
Theorem 2.6 we have the following fundamental inequality: In both of Case I and Case II
one has

ωR3(σµ)− 1

2
ω∧2R3(σµ) > 0. (2.6)

Equipped with this inequality and with Theorem 2.6 we can now easily deduce Lemma 2.3
which played an important role in the proof of Proposition 2.4.

Proof of Lemma 2.3. Given ε > 0, it follows from part (3) of Theorem 2.6 that there exists
n0 > 0 such that for all v ∈ R3 r {0}, w ∈ ∧2R3 r {0} and n > n0 one has

µ∗n
({

g ∈ G :
‖gv‖ > ‖v‖ exp(n(ωR3(σµ)− ε))
‖gw‖ < ‖w‖ exp(n(ω∧2R3(σµ) + ε))

})
> 1− ε.

By (2.6), on choosing ε so that ωR3(σµ)− 1
2ω∧2R3(σµ)− 3

2ε = ε′ > 0 we get that for all for

all v ∈ R3 r {0}, w ∈ ∧2R3 r {0} and n > n0,

µ∗n
({

g ∈ G :
‖gv‖
‖gw‖1/2

>
‖v‖
‖w‖1/2

exp(nε′)

})
> 1− ε.

The statement of the lemma now readily follows. �

We now discuss the second pair of highest weights that will concern us. Let r0 and l0 be
the Lie algebras of the Lie groups R0 and L0 we defined in §2.2. The Lie algebras r0 and l0
correspond to P -invariant lines in the representations ∧3g and ∧4g respectively. We denote
the corresponding weights by ωr0 ∈ Hz(∧3g) and ωl0 ∈ Hz(∧4g). Given t = diag (t1, t2, t3) ∈
z we have ωl0(t) = 2(t1 − t3) and ωr0(t) = t1 + t2 − 2t3 so that (ωl0 − ωr0)(t) = t1 − t2 and
so ωl0 − ωr0 is positive. By part (4) of Theorem 2.6 we arrive at the following fundamental
inequality: In both Case I and Case II

ωl0(σµ)− ωr0(σµ) > 0. (2.7)
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We will often work with the difference ωl0 − ωr0 and use the notation

ωl0/r0 := ωl0 − ωr0 and χl0/r0 := exp ◦ωl0/r0◦ log . (2.8)

2.6. Two lemmas about representations. In this subsection we collect some represen-
tation theoretic results which are specific to the representations we are interested in. Let
V be a representation of H and let ω ∈ Hz(V ). We denote by τω : V → V [ω] the natural
projection and note that it is H-equivariant. We always assume that the norm we choose
on a vector space V is induced by an inner product with respect to which the isotypic
components are orthogonal and such that the maximal compact K < H from the Iwasawa
decomposition acts by isometries. For α > 0 we denote

V^α[ω] := {v ∈ V : ‖τω(v)‖ ≥ α‖v‖}. (2.9)

This is the complement of a projective neighbourhood of ker τω.
For p ∈ Gr2(R3) we define Gp := StabG(p) and Rp to be the radical of Gp. Since

Gpb = Gb for β-almost every b ∈ B these definitions are compatible with our previous
definitions from §2.2. As usual, we denote the corresponding Lie algebras by lower-case
Gothic letters. Moreover in Case II, also recall the notation C for the circle of isotropic
planes in Gr2(R3) that we introduced in §1.3.

Lemma 2.7. The following hold:

(1) The weight ωl0 is a maximal weight in Hz(∧4g).
(2) In Case I there exists α > 0 such that for all p ∈ Gr2(R3), u ∈ ∧3rp and v ∈ g,

v ∧ u ∈ (∧4g)^α[ωl0 ].

(3) In Case II there exists α > 0 such that for all p ∈ C, u ∈ ∧3rp and v ∈ gp,

v ∧ u ∈ (∧4g)^α[ωl0 ].

(4) For all η ∈ H/P one has

{v ∧ u : v ∈ g, u ∈ ∧3rη} ∩ (∧4g)η[ωl0 ] = ∧4lη. (2.10)

Proof. First we prove (1). Given t = diag (t1, t2, t3) ∈ z the eigenvalues of adt on g determine
its eigenvalues on ∧4g. Namely, they are all possible sums of 4 eigenvalues of adt on g
corresponding to different eigenlines. It is then clear from the ordering of the weights of the
adjoint representation that the maximal weight of the fourth wedge is ωl0(t) = 2(t1 − t3).

Next we prove (2). In Case I we have K ∼= SO3(R) and hence it acts transitively on
Gr2(R3). Write p = kp0 for some k ∈ K and then rp = kr0. Since the set (∧4g)^α[ωl0 ]
is K-invariant, it is enough to prove (2) for p = p0. Let {eij}1≤i,j≤3 be the basis of

unit matrices in Mat3(R) and let d1 := e11 + e22 − 2e33 and d2 := e11 − e22 so that
{d1, d2} ∪ {eij}1≤i,j≤3,i 6=j forms a basis of g. Since ∧3r0 is one dimensional the collection

of pure wedges w0 := {v ∧ u : v ∈ g, u ∈ ∧3r0} forms a subspace of ∧4g. It follows that
w0 ⊂ (∧4g)^α[ωl0 ] for some positive α provided that w0 ∩ ker τωl0

= 0. To this end, let

u0 = d1∧ e23∧ e13 ∈ ∧3r0 and assume by way of contradiction that there exists v0 ∈ gr{0}
such that v0∧u0 ∈ ker τωl0

. We may assume without loss of generality that v0 is orthogonal
to r0 or in other words

v0 := v21e21 + v31e31 + v32e32 + v22d2 + v12e12.

Since the condition v0 ∧ u0 ∈ ker τωl0
is H-invariant and u0 is P -invariant we get that

pv0 ∧ u0 ∈ ker τωl0
for all p ∈ P. (2.11)
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For v ∈ g it is easy to check that

v ∧ u0 ∈ ker τωl0
if and only if 〈v, e12〉 = 0. (2.12)

For t ∈ R2 let p(t) := exp(t1e12 + t2e13) ∈ P . It is easy (but tedious) to compute

〈p(t)v0, e12〉 = v12 − t1v22 − t21v21 + t2v32 − t1t2v31.

Combining this computation with (2.11) and (2.12) gives that v0 = 0 which is a contradiction
as required.

The proof of (3) is very similar to the proof of part (2). Since we only consider p ∈ C and
in this case K ∼= SO2(R) acts transitively on C, we can reduce to the case when p = p0. As
before this will follow provided that {v ∧ u : v ∈ g0, u ∈ ∧3r0} intersects ker τωl0

trivially.

Suppose there exists v′0 ∈ g0 r r0 such that v′0 ∧ u0 ∈ ker τωl0
. Without loss of generality we

may suppose that v′0 is orthogonal to r0 and hence we may write

v′0 := v12e12 + v22d2 + v21e21.

For t ∈ R, let p′(t) := exp(t(e12 + e23)) ∈ P . Another tedious computation reveals that

〈p′(t)v′0, e12〉 = v12 − tv22 − t2v21.

Again using (2.11) and (2.12) we see that this implies that v′0 = 0 which is a contradiction.
Finally we prove (4). Since K acts transitively on H/P we see that it is enough to

prove (2.10) for η0 := P . Since ωl0 is maximal in Hz(∧4g) by part (1) we deduce that
(∧4g)η0 [ωl0 ] = (∧4g)ωl0 . Thus, fixing u0 ∈ ∧3r0 r {0}, (2.10) becomes

{v ∧ u0 : v ∈ g, for all t ∈ z, adt(v ∧ u0) = ωl0(t)(v ∧ u0)} = ∧4l0.

The inclusion ⊇ is clear as ωl0 was defined to be the weight by which z acts on ∧4l0. We
now establish the inclusion ⊆. Without loss of generality v is orthogonal to r0, which means
that v is a linear combination of {d2, eij : (i, j) /∈ {(1, 3), (2, 3)}}. In turn, v ∧ u0 is a linear
combination of {d2 ∧ u0, eij ∧ u0 : (i, j) /∈ {(1, 3), (2, 3)}}. Since all the vectors in this
set are eigenvalues of adz and only e12 ∧ u0 has eigenvalue given by ωl0 we deduce that if
adt(v ∧ u0) = ωl0(t)(v ∧ u0) for all t ∈ z, then v ∈ R(e12 ∧ u0) = ∧4l0 which completes the
proof. �

Remark 2.8. Lemma 2.7 lies at the heart of the discussion. In Lemma 2.7 the crucial
difference between Case I and Case II manifests itself. Parts (2) and (3) say that certain
vectors in ∧4g have a component in (∧4g)[ωl0 ] which is of ‘positive proportion’. This will
allow us to use the positivity (2.7) and control to some extent the way two nearby points in
X drift away from each other.

Part (4) is needed to ensure that our ‘limiting displacement’ will be pointing in the right
direction in the case that the multiplicity of ωl0 is larger than 1.

In §3.5 we will know that the two nearby points lie in the same plane p. Hence, the
displacement vector between them corresponds to a pure wedge of the form v ∧ u for v ∈ gp
and u ∈ ∧3rp. This will allow us to use Lemma 2.7 in both Case I and Case II.

On the other hand, in §6 we will use the same positivity to prove Theorem 2.1(b) which is
the statement that the limit measures are non-atomic. There, we will also need to understand
how two near-by points in X drift apart but will need to do so for pairs of points which do
not necessarily lie in the same plane. This means that the displacement vector between them
is of the form v ∧ u where v ∈ g and u ∈ rp for some p ∈ Gr2(R3). Thus, we would be able
to apply Lemma 2.7 only for Case I.

One concludes that the small technical difference between parts (2) and (3) of Lemma 2.7
is what stands behind the phenomenon appearing in Theorem 1.10.
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Remark 2.9. By analysing the proof of Lemma 2.7 one can see that in Case II the subspace
{v ∧ u : v ∈ g, u ∈ ∧3r0} does intersect ker τωl0

non-trivially. In fact, this intersection equals

{v ∧ u : v ∈ spanR(e21 + 2e32), u ∈ ∧3r0}. This should be compared with the construction
given in the proof of Theorem 1.10 since Λt = t(e21 + 2e32) spanZ({e1, e2}).

The following lemma will be used in §5 and §6 where we will replace µ by µ∗n0 for
some n0 ∈ N in order to know that the integrals on the left hand sides of equations (2.13)
and (2.14) are bounded away from zero uniformly.

Lemma 2.10. There exist λ0 > 0 and n0 > 0 such that for all n ≥ n0, the following hold:

(1) In both Case I and Case II, for all v ∈ R3 r {0} and w ∈ ∧2R3 r {0} one has∫
G

log

(
‖gv‖
‖v‖

/‖gw‖1/2
‖w‖1/2

)
dµ∗n (g) > nλ0. (2.13)

(2) In case Case I, for all p ∈ Gr2(R3), u ∈ ∧3rp r {0} and v ∈ gr rp one has∫
G

log

(
‖g(v ∧ u)‖
‖v ∧ u‖

/‖gu‖
‖u‖

)
dµ∗n (g) > nλ0. (2.14)

Proof. Let

λ1 :=
1

2
min{ωR3(σµ)− 1

2
ω∧2R3(σµ), ωl0(σµ)− ωr0(σµ)}

which is positive by (2.6) and (2.7). The inequality (2.13) with λ0 = λ1 and n large enough
(independent of the vectors) follows directly from the uniformity of the L1-convergence in
part (3) of Theorem 2.6 applied to the irreducible representations of H on R3 and ∧2R3.

Next we prove (2.14). First we show that the line ∧3rp in ∧3g is contained in the isotypic
component (∧3g)[ωr0 ]. To see this, note that since rp = gr0 where g ∈ H is such that
gp0 = p, it is clear that it is enough to show that the line ∧3r0 is contained in the isotypic
component (∧3g)[ωr0 ]. This holds since z acts on ∧3r0 by the weight ωr0 and this line is an
eigenline of P .

Next, note that by part (2) of Lemma 2.7 there exists α > 0 such that for all p ∈
Gr2(R3),u ∈ ∧3rp r {0} and v ∈ gr rp one has v ∧ u ∈ (∧4g)^α[ωl0 ]. This implies that for
any g ∈ H one has

‖g(v ∧ u)‖
‖v ∧ u‖

≥ α−1
‖gτωl0

(v ∧ u)‖
‖τωl0

(v ∧ u)‖
.

Together with another application of the uniform L1-convergence in part (3) of Theorem 2.6
(this time for the irreducible representations corresponding to the highest weights ωl0 and
ωr0) this shows that (2.14) holds for all large enough n, with nλ0 on the right hand side
replaced by nλ1 + logα. Since nλ1 + logα > nλ1/2 for all large enough n, the lemma is
valid with λ0 = λ1/2. �

3. The drift argument - Proof of Theorem 2.1(a)

In this section we will prove Theorem 2.1(a) by adapting the exponential drift argument
of Benoist and Quint from [BQ13b]. Throughout ν ∈ Pµ(X) is a µ-ergodic stationary
measure and (BX , βX , T ) denotes the backwards dynamical system as defined in (2.2).
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3.1. The horocyclic flow. It will be convenient for us to work in an extension of the
backwards dynamical system having an extra coordinate which is used for book keeping
purposes. Recall that Z is the Cartan subgroup of H defined in §2.4. Let λ be a Haar
measure on Z and let

BX,Z := BX × Z and βX,Z :=

∫
B×Z

δb ⊗ νb ⊗ δzdβ (b) dλ (z) . (3.1)

The extension of the backwards dynamical system that we consider is given by the map

T̂ : BX,Z → BX,Z which clearly preserves βX,Z and is defined using the Iwasawa cocycle by

T̂ (b, x, z) := (Sb, b−1
1 x,E(b)−1z).

The horocyclic flow is an R-action on BX,Z which interacts with T̂ in a manner reminis-
cent to the interaction of the standard horocyclic and geodesic flows on the unit tangent
bundle of the upper half plane and hence the terminology. Recall the notation introduced in
§2.2 and in particular, the groups L0, R0, U0 := L0/R0 and the resulting equivariant families
Lη, Rη, Uη for η ∈ H/P as well as the notation Lb, Rb, Ub defined for β-almost every b ∈ B.
We denote the Lie algebras of these groups by corresponding Gothic letters and note that
naturally u0 = l0/r0 and similar identifications exist when the subscript 0 is replaced by
η ∈ H/P or b in the domain of definition of the boundary map ξ. Observe that although
for η = gP ∈ H/P the map Adg maps l0 to lη and r0 to rη and therefore descends to
a map Adg : u0 → uη, this map is not well defined in the sense that it depends on the
choice of representative g for the coset η. This is remedied as follows. Recall the section
s : H/P → H/N that was chosen in §2.4 where N is the unipotent radical of the minimal
parabolic P of H. Observe that although N acts via the adjoint representation non-trivially
on l0, r0 respectively, these actions descend to the trivial action on the quotient u0. Thus,
given η ∈ H/P with s(η) = gN ∈ H/N , we do have a well defined map u0 → uη given by

`+ r0 7→ Adg(`+ r0) = Adg(`) + rη ∈ lη/rη = uη.

By abuse of notation we denote this map

Ads(η) : u0 → uη.

Precomposing with the boundary map ξ we obtain the isomorphisms Ads(ξ(b)) : u0 → ub
defined for β-almost every b ∈ B. Note also that Z acts on u0 via the adjoint representation
and hence the isomorphism Ads(ξ(b))z = Ads(ξ(b)) Adz : u0 → ub is well defined for all z ∈ Z
and β-almost every b ∈ B. Following [BQ13b], for u ∈ u0 we define the horocyclic flow
Φu : BX,Z → BX,Z by

Φu(b, x, z) := (b, exp(Ads(ξ(b))z(u))x, z). (3.2)

Further clarification is needed in this definition: For η ∈ H/P and ¯̀ = ` + rη ∈ uη,
exp(¯̀) := exp(`)Rη ∈ Uη is well defined. Moreover, since the action of Rη on the plane pη is
trivial, the group Uη acts on the fibre π−1(pη) ⊂ X. By Proposition 2.2, for β-almost every
b ∈ B, νb is supported on π−1(pb) and therefore we conclude from (3.1) that for βX,Z-almost
every (b, x, z) ∈ BX,Z we have that x ∈ π−1(pb) and exp(Ads(ξ(b))z(u)) ∈ Ub so equation
(3.2) makes sense.

We will utilise the joint action of T̂ and the flow Φu0 on BX,Z . A key point is the following
lemma.

Lemma 3.1. For β-almost every b ∈ B, for any s = (b, x, z) ∈ BX,Z one has

Φu◦T̂ (s) = T̂ ◦Φu(s) for all u ∈ u0.
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Proof. Recall that by (2.5) and the definition of E for β-almost every b ∈ B one has

b−1
1 s(ξ(b)) = s(ξ(Sb)) E(b)−1. (3.3)

For arbitrary u ∈ u0, using the definitions we have that

Φu◦T̂ (b, x, z) = (Sb, exp(Ads(ξ(Sb)) E(b)−1z u)b−1
1 x,E(b)−1z)

and
T̂ ◦Φu(b, x, z) = (Sb, b−1

1 exp(Ads(ξ(b))z u)x,E(b)−1z).

Once b satisfies (3.3) these two expressions are equal and the lemma follows. �

Later on it will be important for us to restrict attention to a ‘finite window’ in the
Z-coordinate. Let U ⊂ Z be a bounded measurable set of finite positive λ-measure and
define2

BX,U := BX × U and βX,U := βX,Z |BX,U . (3.4)

Note that BX,U is Φu0-invariant but not T̂ -invariant. The following proposition (in which
the role of U is insignificant) shows why the horocyclic flow is natural from the point of
view of Proposition 2.4.

Proposition 3.2. The measure βX,U is Φu-invariant for all u ∈ u0 if and only if for
β-almost every b ∈ B the measure νb is Ub-invariant.

Remark 3.3. In particular, by Proposition 2.4, we can prove Theorem 2.1(a) by establishing
the Φu0-invariance of βX,U .

Proposition 3.2 is a straightforward corollary of the following lemma.

Lemma 3.4. Let ρ : (Y, η) → (Y ′, η′) be a morphism of Borel probability spaces. Let
η =

∫
Y ′ ηydη

′ (y) be the disintegration of η over η′ and M : Y → Y be a measurable map
such that ρ = ρ◦M . Then η is M -invariant if and only if for η′-almost every y ∈ Y ′, ηy is
M -invariant.

The proof of Lemma 3.4 is a direct consequence of the uniqueness of disintegration and
is left to the reader.

3.2. Leafwise measures. We begin with some general notation and measure theory. Given
a locally compact second countable Hausdorff space Y we let M(Y ) denote the space of
Radon measures on Y . We equip M(Y ) with the coarsest topology so that θ 7→ θ(f) :=∫
Y fdθ is continuous for any f ∈ Cc(Y ). We let PM(Y ) denote the space of equivalence

classes of measures in M(Y ) under the equivalence relation of proportionality and equip
it with the quotient topology. For η ∈ M(Y ) we denote by [η] its equivalence class in
PM(Y ). For η ∈ M(Y ) and a set V ⊂ Y of finite η-measure, we let η|V ∈ P(V ) be given
by (η|V )(F ) := η(F ∩ V )/η(V ) for all measurable F ⊆ V . Given a countably generated
sub-σ-algebra A of the Borel σ-algebra, the atom of y with respect to A is the smallest
A-measurable set containing y and we denote it by [y]A. Given η ∈M(Y ), the conditional
measures of η along A are a collection {ηAy }y∈E of probability measures ηAy ∈ P(Y ), where
E is a measurable subset of Y of full η-measure such that for any η-integrable function f
on Y , the map y 7→

∫
Y fdηAy is the conditional expectation E(f |A). It then follows that

η-almost surely ηAy ∈ P([y]A). If Y is a group, then for y ∈ Y we denote by ly : Y → Y the
translation by y on the left. This induces an action of Y on M(Y ), (y, η) 7→ (ly)∗η. This
action respects the equivalence relation of proportionality and hence descends to an action
on PM(Y ) which we denote (y, [η]) 7→ (ly)∗[η].

2Later on we will take U to be the image under the exponential map of the unit ball in z.
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We will use the theory of leafwise measures as presented in [EL10, §6], [BQ11, §4].
This is a measure theoretic toolbox developed Katok-Spatzier, Lindenstrauss, Benoist-Quint
and Einsiedler-Katok-Lindenstauss [KS98, Lin06, BQ11, EKL06] which captures the way a
measure on a space disintegrates with respect to the action of a group. We will follow the
notation and terminology of [EL10].

Let (Y,Y) be a standard Borel space and let Ψt a measurable R-action3 (a flow) on Y .
Assume that for any y ∈ Y the stabiliser StabR(y) is a discrete subgroup of R and let
η ∈ M(Y ) be a finite measure. The construction in [BQ11, §4] (see also [EL10, §6]) gives
rise to a measurable map y 7→ (η)Ψ

y from a measurable subset of full η-measure E ⊂ Y to
M(Y ) having the following properties:

P1: Characterising property. Given a measurable subset E′ ⊂ E with η(E′) > 0 and
a countably generated sub-σ-algebras A of the Borel σ-algebra on E′ whose atoms
are of the form [y]A = {Ψt(y) : t ∈ oy} for some open and bounded oy ⊂ R, for all
y ∈ E′, then the push-forward of (η)Ψ

y |oy via the orbit map t 7→ Ψt(y) is the conditional

measure (η|E′)Ay .

P2: Rootedness. For all y ∈ E, we have 0 ∈ supp (η)Ψ
y .

P3: Normalisation. For any y ∈ E, (η)Ψ
y ([−1, 1]) = 1

P4: Compatibility. For all y ∈ E and t ∈ R such that Ψt(y) ∈ E one has

[(η)Ψ
y ] = (lt)∗[(η)Ψ

Ψt(y)].

Property P1 is a characterising property in the sense that if y 7→ σ(y) is a measurable map
defined on a set of full η-measure into M(Y ) such that P1 is satisfied then [σ(y)] = [(η)Ψ

y ]
for η-almost every y ∈ Y . Property P3 is a convenient way to choose in a measurable
manner a well defined measure in the equivalence class [(η)Ψ

y ] which is well defined for
η-almost every y ∈ Y by P1, P2.

We call the map y 7→ (η)Ψ
y satisfying properties P1-P4 the leafwise measure-map (LWM-

map) of η with respect to the flow ΨR and the set E is called a domain of the LWM-map.
The measure (η)Ψ

y is called the leafwise measure (LWM) of η at y with respect to the flow
ΨR.

We shall consider the LWM-map of the infinite Radon measure βX,Z ∈ M(BX,Z) with
respect to the flow Φu0 . The fact that this measure is infinite does not matter much as one
can present BX,Z as a countable union of Φu0-invariant sets of the form B ×X ×Ui, where
for example Ui is the ball of radius i in Z centred at the identity and the restriction of βX,Z

to each such set has finite measure. In fact, due to the fact that the flow Φu0 respects the
disintegration βX,Z =

∫
B×Z δb ⊗ νb ⊗ δzdβ (b) dλ (z) we have the following.

Lemma 3.5. For β⊗λ-almost every (b, z) ∈ B×Z and δb⊗νb⊗δz-almost every s ∈ BX,Z ,

(δb ⊗ νb ⊗ δz)Φ
s = (βX,Z)Φ

s .

Proof. Let E be a domain for the LWM-map of βX,Z with respect to the flow Φu0 . Let
(b, z) ∈ B×Z be such that the slice E(b,z) = {s = (b, x, z) ∈ E} has full δb⊗νb⊗δz-measure,

which holds β ⊗ λ-almost surely since E is of full βX,Z-measure. It is straightforward to
check that for β-almost every b ∈ B, the assignment s 7→ (βX,U )Φ

s satisfies the characterising
property of the LWM-map of δb ⊗ νb ⊗ δz and by the uniqueness of the LWM-map the
statement of the lemma follows. �

3The theory concerns itself with a locally compact second countable metrizable topological group but we
will focus on flows.
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The next lemma utilises the commutation relation in Lemma 3.1 and shows that the
LWM-map of βX,Z is constant along T̂ -orbits.

Lemma 3.6. For βX,Z-almost every s ∈ BX,Z and all n ∈ N,

(βX,Z)Φ
s = (βX,Z)Φ

T̂n(s)
. (3.5)

Proof. For β ⊗ λ-almost every (b, z) ∈ B × Z,

T̂ : (BX,Z , δb ⊗ νb ⊗ δz) −→ (BX,Z , δSb ⊗ νSb ⊗ δE(b)−1z)

is an isomorphism of probability spaces which by Lemma 3.1 commutes with the flow
Φu0 . It thus follows from the uniqueness of the LWM-map that for β ⊗ λ-almost every
(b, z) ∈ B×Z and δb⊗ νb⊗ δz-almost every s ∈ BX,Z one has the equality (δb⊗ νb⊗ δz)Φ

s =
(δSb ⊗ νSb ⊗ δE b−1z)

Φ
T̂ (s)

. Taking into account Lemma 3.5 we deduce that for βX,Z-almost

every s ∈ BX,Z the equality (βX,Z)Φ
s = (βX,Z)Φ

T̂ (s)
holds. This propagates to the statement

of the lemma by intersecting countably many sets of full measure. �

Preparing the grounds for the drift argument we restrict attention to a finite window and
consider the probability space (BX,U , βX,U ) as in (3.4). The relevance of the LWM’s to our
discussion is the following statement. See [EL10, Problem 6.28] and [BQ11, Proposition
4.3].

Theorem 3.7. The measure βX,U is Φu0-invariant if and only if (βX,U )Φ
s is equal to the

Haar measure on u0 for βX,U -almost every s ∈ BX,U .

In particular, in order to prove that βX,U is Φu0-invariant we need to show that (βX,U )Φ
s

is Haar βX,U -almost surely. Note that by Remark 3.3, this would complete the proof of
Theorem 2.1(a). The Haar measure is characterised as the unique η ∈ M(u0) such that
Stabu0(η) = u0. Thus our goal is to establish the βX,U -almost sure equality

Stabu0((βX,U )Φ
s ) = u0.

Because of property P4 of the LWM’s, they interact more naturally with the action of
u0 on PM(u0). In turn, the drift argument in §3.5 will produce the almost sure equality
Stabu0([(βX,U )Φ

s ]) = u0. Hence the importance of the following proposition to our discussion.

Proposition 3.8. For βX,U -almost every s ∈ BX,U one has

Stabu0((βX,U )Φ
s ) = Stabu0([(βX,U )Φ

s ]).

Proof. We will prove that

Stabu0((βX,U )Φ
s ) ⊇ Stabu0([(βX,U )Φ

s ])

for βX,U -almost every s ∈ BX,U since the reverse inclusion is obvious. By [EL10, Theorem
6.30] for βX,U -almost every s ∈ BX,U we have

lim
T→∞

1

T 4
(βX,U )Φ

s ([−T, T ]) = 0. (3.6)

Let s ∈ BX,U be such a point. If u ∈ Stabu0([(βX,U )Φ
s ]) r {0} then there exists c 6= 0 such

that (lu)∗(β
X,U )Φ

s = c(βX,U )Φ
s , which implies that for all i ∈ N, (liu)∗(β

X,U )Φ
s = ci(βX,U )Φ

s .
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We would like to show that c = 1. For all n ≥ 1 we have

(βX,U )Φ
s ([−n|u|, n|u|]) ≥

n−1∑
i=1−n

(βX,U )Φ
s (liu[−|u|/2, |u|/2])

=
n−1∑
i=1−n

((liu)∗(β
X,U )Φ

s )([−|u|/2, |u|/2])

= (βX,U )Φ
s ([−|u|/2, |u|/2])

n−1∑
i=1−n

ci.

By property P2 of the LWM’s, (βX,U )Φ
s ([−|u|/2, |u|/2]) > 0 and hence we see that unless

c = 1 the volume (βX,U )Φ
s ([−n|u|, n|u|]) is growing exponentially in n which contradicts (3.6)

as desired. �

3.3. Zooming in on the atoms. Let BX,Z be the Borel σ-algebra of BX,Z and define

Qn := T̂−n(BX,Z) and Q∞ := ∩∞i=0Qi.
For s ∈ BX,Z the atom of s with respect to Qn is given by

[s]Qn = {s′ : T̂n(s) = T̂n(s′)}
and the atom of s with respect to Q∞ is given by

[s]Q∞ = {s′ : there exists n ∈ N with T̂n(s) = T̂n(s′)}.
Recall that A := suppµ. For a ∈ An we let

s(a) := (aSnb, an1 (bn1 )−1x,En(aSnb) En(b)−1z). (3.7)

We then have an identification An ∼= [s]Qn via the map a 7→ s(a). It is easy to see that

via this identification the probability measure µ⊗n on An corresponds to the conditional
measure (βX,Z)Qns (cf. [BQ13b, Lemma 3.3]).

We will need to consider σ-algebras whose atoms are tiny parts of the above atoms. This
is done as follows. From now on we fix

U := exp({z ∈ z : ‖z‖ < 1}) ⊂ Z (3.8)

and recall the notation and definition in (3.4). We defineQUn (resp. QU∞) to be the restriction
of Qn (resp. Q∞) to BX,U . For s ∈ BX,U the atom of s with respect to QUn is given by

[s]QUn = {s(a) : a ∈ An and En(aSnb) En(b)−1z ∈ U}.

We therefore let

Ans,U := An(b,z),U := {a ∈ An : En(aSnb) En(b)−1z ∈ U} (3.9)

be the subset of An corresponding to the subset [s]QUn of [s]Qn .

If µ⊗n(Ans,U ) > 0, then we denote by µ⊗ns,U the normalised restriction of µ⊗n to As,U . That
is

µ⊗ns,U := µ⊗n|As,U
. (3.10)

Note that µ⊗ns,U only depends on the B and Z co-ordinates of s. By [BQ13b, Lemma 3.6

+ Equation (3.5)], under the identification a 7→ s(a) of Ans,U and [s]QUn we have that for

βX,U -almost every s ∈ BX,U ,

µ⊗ns,U = (βX,U )
QUn
s . (3.11)
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We are now ready to cite the essential technical results from [BQ13b] that will allow
us to analyse in detail the growth and directions of sequences of vectors corresponding to
displacements between points in X. These results are stated in terms of the conditional
measures µ⊗ns,U . For δ > 0 we use the notation x �δ y to mean there exists a constant cδ ≥ 1

depending on δ such that that c−1
δ x < y < cδx for all x, y ∈ R.

The following lemma is used in order to control the growth of displacements.

Lemma 3.9. Let V be a finite dimensional representation of H. For βX,U -almost every
s ∈ BX,U and all δ > 0 there exists n0 > 0 such that for all n > n0, ω ∈ Hz(V ) and
v ∈ V [ω] r {0} one has

µ⊗ns,U ({a ∈ An : ‖an1v‖ �δ ‖an1‖‖v‖}) > 1− δ. (3.12)

Proof. This is the first part of [BQ13b, Proposition 4.21] where the conditional measures
βUn,c (in the notation of Benoist and Quint) equal µ⊗ns,U [BQ13b, Lemma 3.6 + Equation

(3.5)]. �

We will use Lemma 3.9 in the following form.

Corollary 3.10. Let V be a finite dimensional representation of H. Then for βX,U -almost
every s = (b, x, z) ∈ BX,U and all δ > 0 there exists n0 > 0 such that for all n > n0,
ω ∈ Hz(V ) and v ∈ V [ω] r {0} one has

µ⊗ns,U ({a ∈ An : ‖an1v‖ �δ χω(En(b))‖v‖}) > 1− δ. (3.13)

Proof. Let s = (b, x, z) ∈ BX,U be such that the conclusion of Lemma 3.9 holds for s. Given
δ > 0 we get the existence of n0 such that (3.12) holds for all n > n0, ω ∈ Hz(V ) and all
v ∈ V [ω] r {0}.

Let ω ∈ Hz(V ) and v0 ∈ VSnb[ω] a unit vector. By Lemma 2.5, if s is outside a βX,U -null
set, for µ⊗n-almost every a ∈ An one has

‖an1v0‖/‖v0‖ = χω(En(aSnb)).

Applying equation (3.12) to v0 we get that for all n > n0 and ω ∈ Hz(V ),

µ⊗ns,U ({a ∈ An : ‖an1‖ �δ χω(En(aSnb))}) > 1− δ. (3.14)

Taking into account that we are conditioning on the fact that

En(aSnb) En(b)−1z ∈ U
and that z ∈ U , we may replace En(aSnb) with En(b) in (3.14) by modifying the implied
constant if necessary. This gives us that for all n > n0 and ω ∈ Hz(V ),

µ⊗ns,U ({a ∈ An : ‖an1‖ �δ χω(En(b))}) > 1− δ.

Applying again (3.12) we get that for all n > n0, ω ∈ Hz(V ) and v ∈ V [ω] r {0} one has

µ⊗ns,U ({a ∈ An : ‖an1v‖ �δ χω(En(b))‖v‖}) > 1− 2δ,

which finishes the proof up to replacing δ by δ/2. �

The following lemma will allow us to control the direction of displacements. For any
vector space V we use the distance dPV on PV defined so that for all v ∈ V r {0} and
W ⊆ V one has

dPV (Rv,W ) := min
w∈W

‖v ∧ w‖
‖v‖‖w‖

.

Note that dPV (Rv,W ) = 0 if and only if Rv ⊆W .
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Lemma 3.11. Let V be a finite dimensional representation of H. Then for βX,U -almost
every s ∈ BX,U and for all ρ > 0 and δ > 0 there exists n0 > 0 such that for all n > n0,
ω ∈ Hz(V ), v ∈ V [ω] r {0} and η ∈ H/P one has

µ⊗ns,U ({a ∈ An : dPV (an1Rv, an1Vη[ω]) < ρ}) > 1− δ. (3.15)

Proof. This is exactly the second part of [BQ13b, Proposition 4.21] where the conditional
measures βUn,c (in the notation of Benoist and Quint) equal µ⊗ns,U by [BQ13b, Lemma 3.4 +

Equation (3.5)]. �

In our application of Lemma 3.11 we will not know that the vector v belongs to a single
isotypic component. The following lemma will allow us to obtain similar statements for
vectors which do not lie in a single isotypic component.

Lemma 3.12. Let V be a representation of H and assume that Hz(V ) contains a maximal
weight ωm. Let α > 0 and V^α[ωm] be as in (2.9). Then for βX,U -almost every s ∈ BX,U and
for all ρ > 0 and δ > 0 there exists n0 > 0 such that for all n > n0 and v ∈ V^α[ωm] r {0}
one has

µ⊗ns,U ({a ∈ An : dPV (an1Rv, an1Rτωm(v)) ≤ ρ}) > 1− δ. (3.16)

Proof. Let v ∈ V^α[ωm] r {0}. Then for any g ∈ H one has

dPV (gRv, gRτωm(v)) =
‖(
∑

ω∈Hz(V ) gτω(v)) ∧ gτωm(v)‖
‖gv‖‖gτωm(v)‖

=
‖
∑

ω∈Hz(V )r{ωm} gτω(v)‖‖gτωm(v)‖
‖gv‖‖gτωm(v)‖

(3.17)

�
maxω∈Hz(V )r{ωm}‖gτω(v)‖

‖gτωm(v)‖
.

Now given ρ > 0, by parts (2) and (4) of Theorem 2.6, for β-almost every b ∈ B there exists
n0 > 0 so that for all n > n0 and ω ∈ Hz(V ) r {ωm} one has

exp((ω − ωm)(Ln(b))) =
χω(En(b))

χωm(En(b))
≤ ρ. (3.18)

By enlarging n0 if necessary and using Corollary 3.10 we get that for βX,U -almost every
s ∈ BX,U and for all δ > 0 and n > n0 there is F ⊂ An with µ⊗ns,U (F ) > 1−δ such that for all

a ∈ F , ω ∈ Hz(V ) and v ∈ V such that τω(v) 6= 0 we have ‖an1τω(v)‖ �δ χω(En(b))‖τω(v)‖.
Thus, using (3.17), (3.18) and the assumption that v ∈ V^α[ωm] r {0} we get

dPV (an1Rv, an1Rτωm(v))�δ ρ/α

for all a ∈ F which, up to adjusting ρ, is the claim of the lemma. �

The following lemma will allow us to upgrade measurability to continuity on certain
compact sets of arbitrarily large measure. During the course of the proof and in §3.5 we
will use a few standard results from measure theory and analysis such as Lusin’s theorem and
the martingale convergence theorem. A suitable reference for all of these results is [Bog07].

Lemma 3.13. Let E ⊂ BX,U be a measurable subset such that βX,U (E) = 1. Then, for
any 0 < δ < 1 there exist compact subsets K ′ ⊂ K ⊂ E such that:

(1) The map s 7→ (βX,U )Φ
s is defined and continuous on K.

(2) The map s = (b, x, z) 7→ ξ(b) is defined and continuous on K (see §2.2).
(3) The volume βX,U (K ′) > 1− 2δ.
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(4) There exists n0 > 0 such that for all s ∈ K ′ and n > n0 one has

µ⊗ns,U ({a ∈ An : s(a) ∈ K}) > 1− δ. (3.19)

Proof. Let E ⊂ BX,U be a set of full BX,U -measure and 0 < δ < 1 be given. We may
assume that E is contained in the domain of the LWM-map and the projection to B of E
is contained in the full measure set on which ξ is defined and measurable. Hence by Lusin’s
theorem we may pick a compact set K ⊂ E such that requirements (1) and (2) hold and
such that βX,U (K) > 1− δ2. Since 0 ≤ E(1K |QU∞) ≤ 1 and∫

BX,U
E(1K |QU∞)dβX,U > 1− δ2,

by Chebyshev’s inequality there exists a compact L′ ⊂ BX,U such that ϕ|L′ > 1 − δ and
βX,U (L′) > 1− δ. Let L = L′ ∩K so that βX,U (L) > 1− δ − δ2 > 1− 2δ.

Since the conditional expectations E(1K |QUn ) are a reversed martingale, by the martingale
convergence theorem we have

lim
n→∞

E(1K |QUn ) = E(1K |QU∞) βX,U -almost surely.

Using Egoroff’s theorem we can assume that on L the convergence is uniform. In particular,
there exists n0 > 0 such that for all n > n0 one has ϕn|L > 1− δ. From (3.11) we see that

E(1K |QUn )(s) =

∫
An

1K(s(a))dµ⊗ns,U (a) .

Hence, for all s ∈ L and n > n0 one has

µ⊗ns,U ({a ∈ An : s(a) ∈ K}) > 1− δ. (3.20)

Hence the requirements of the lemma are satisfied with the sets L ⊂ K ⊂ E. �

3.4. Constructing the displacements. We set up some notational conventions which will
be used in the drift argument in the next subsection. For η ∈ H/P we consider the quotient
gη/rη of the Lie algebra gη of Gη by the Lie algebra rη of the solvable radical Rη < Gη.
The exponential map exp : gη/rη → Gη/Rη is well defined and since Rη acts trivially on
the plane pη, the quotient Gη/Rη acts (transitively) on the fibre π−1(pη). In particular it
makes sense to write for v ∈ gη/rη and x ∈ π−1(pη), exp(v)x and in fact, on letting v vary
in a basis of neighbourhoods of 0 in gη/rη one obtains a basis of neighbourhoods of x in
π−1(pη). If y = exp(v)x we refer to v as a displacement between y and x.

For g ∈ G, the adjoint action of g on g induces an isomorphism from gη/rη to ggη/rgη.
Thus, for v ∈ gη/rη we let gv denote the corresponding image in rgη/rgη. If x, y ∈ π−1(pη)
and v ∈ gη/rη is a displacement between x and y, then for any g ∈ G we have that
gv ∈ ggη/rgη is a displacement between gx, gy ∈ π−1(pgη). In particular, for β-almost every
b ∈ B (where ξ is defined and equivariant) and for all x, y ∈ π−1(pb), v ∈ gb/rb and n ∈ N
one has that:

if exp(v)x = y then exp((bn1 )−1v)(bn1 )−1x = (bn1 )−1y. (3.21)

Remark 3.14. Note that as rη is not an ideal in g these notions cannot be extended to
define displacements in g/rη between nearby points x, y ∈ X without the assumption that
they both lie in the same plane. In §6 we will need this more general notion of displacement
and develop the necessary notation and terminology.
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We equip gη/rη with the quotient norm which is induced by our pre-fixed inner product
on g. We choose a metric dX on X in such a way that if v ∈ gη/rη and ‖v‖ ≤ ε, then for
any x ∈ π−1(pη) one has that dX(x, exp(v)x) ≤ ε. See §6.1 for details regarding an explicit
choice of such a metric.

We use the assumption that the νb’s are non-atomic β-almost surely to build a sequence
of displacements that will become input for the drift argument as reflected in the following
lemma.

Lemma 3.15. Let F ⊂ BX,Z be a set of positive βX,Z-measure and suppose that for β-
almost every b ∈ B the measures νb are non-atomic. Then, for βX,Z-almost every (b, x, z) ∈
F there exists a sequence {vi}i∈N ⊂ gb/rbr {0} tending to 0 such that that for all i ∈ N one
has (b, exp(vi)x, z) ∈ F and lim supn→∞ tn(b, vi) =∞ where

tn(b, vi) := χl0/r0(En(b))‖(bn1 )−1v‖. (3.22)

Proof. We fix a measurable set F ⊂ BX,Z such that βX,Z(F ) > 0. Since the statement
we are trying to prove is an almost sure statement, it is safe to neglect βX,Z-null sets. It
follows from Proposition 2.2 that we may assume supp νb ⊆ π−1(pb) and x ∈ π−1(pb) for
all (b, x, z) ∈ F . Furthermore, using the definition of βX,Z , we may assume that for all
(b, x, z) ∈ F , x belongs to the support of νb. In other words, if for i ∈ N we let N b

i denote
a basis of neighbourhoods of 0 in gb/rb then for all (b, x, z) ∈ F and i ∈ N,

νb({exp(v)x : v ∈ N b
i }) > 0. (3.23)

For b ∈ B let
sb := {v ∈ gb/rb : lim supn→∞ tn(b, v) <∞}.

In light of (3.23) and the definition of the measure βX,Z in order to prove the lemma, it is
enough to establish

νb(exp(sb)x) = 0 for βX -almost every (b, x) ∈ BX . (3.24)

Let dX denote a distance function on X as discussed before the lemma. For (b, x) ∈ BX

let
Wb(x) := {y ∈ X : limn→∞ dX((bn1 )−1y, (bn1 )−1x)→ 0}.

It is shown in [BQ13b, Proposition 6.18] that βX -almost surely νb(Wb(x) r {x}) = 0. Due
to our non-atomicity assumption we deduce that βX -almost surely νb(Wb(x)) = 0. Hence
we can verify (3.24) by showing that

exp(sb)x ⊂Wb(x) for βX -almost every (b, x) ∈ BX . (3.25)

To this end, let (b, x) ∈ BX and v ∈ sb so that tn(b, v) is bounded and let y = exp(v)x. We
will finish by showing that if (b, x) is outside a βX -null set, then y ∈Wb(x). By part (2) of
Theorem 2.6 and (2.7) one has

lim
n→∞

ωl0/r0(Ln(b)/n) = ωl0/r0(σµ) > 0 β-almost surely

and hence
lim sup
n→∞

χl0/r0(En(b)) =∞ β-almost surely. (3.26)

Therefore, once (b, x) is such that (3.26) holds then taking into account the definition of
tn(b, v) and its boundedness we conclude that limn→∞‖(bn1 )−1v‖ = 0. In particular, on
denoting xn = (bn1 )−1x we get that

dX((bn1 )−1x, (bn1 )−1y) = dX(xn, (b
n
1 )−1 exp(v)x)

= dX(xn, exp((bn1 )−1v)xn).
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It follows that

lim
n→∞

dX((bn1 )−1x, (bn1 )−1y) = 0

where we use (3.21) which holds β-almost surely. This shows that y ∈ Wb(x) and finishes
the proof of the lemma. �

3.5. The exponential drift - Proof of Theorem 2.1(a). We now prove Theorem 2.1(a)
which we restate for convenience.

Theorem 3.16. Let µ ∈ P(G) be a compactly supported measure and suppose we are either
in Case I or Case II. Let ν ∈ Pµ(X) be an ergodic µ-stationary measure on X and assume
that for β-almost every b ∈ B the limit measures νb are non-atomic, then ν is the natural
lift of the Furstenberg measure of µ on Gr2(R3).

Proof. Let U be as in (3.8). By Proposition 2.4 and Proposition 3.2 it is enough to es-
tablish that βX,U is invariant under the horocyclic flow Φu0 . By Theorem 3.7 we are
reduced to establishing that for βX,U -almost every s ∈ BX,U the LWM, (βX,U )Φ

s is equal
to the Haar measure on u0. Said differently, we are reduced to establishing the equality
Stabu0((βX,U )Φ

s ) = u0, β
X,U -almost surely. By Proposition 3.8 it is enough to establish the

following claim:

Claim 3.17. The equality Stabu0([(βX,U )Φ
s ]) = u0 holds βX,U -almost surely.

The rest of the proof is devoted to proving this claim. There exists a measurable S-
invariant set of full measure B0 ⊂ B such that for all b ∈ B0, the boundary map ξ is defined
and equivariant at b and Lemma 2.5 is applicable to b with respect to the exterior powers
of the adjoint representation of H on g.

Let E ⊆ B0×X×U be a measurable subset of full βX,U -measure such that the LWM-map
is defined on E, Lemma 3.6 is applicable for any point in E in the sense that for all s ∈ E
and n ∈ N,

(βX,U )Φ
s = (βX,U )Φ

T̂n(s)
. (3.27)

Additionally, using Proposition 2.2, we assume that for all (b, x, z) ∈ E one has νb(π
−1(pb)) =

1 and x ∈ π−1(pb). For s = (b, x, z) ∈ E and v ∈ gb/rb we denote

exp(v)s := (b, exp(v)x, z). (3.28)

Let 0 < δ < 1/10 be arbitrarily small and let K ′ ⊂ K ⊂ E be compact subsets be as
guaranteed by Lemma 3.13.

Definition. Given a point s = (b, x, z) ∈ K ′ we say that a sequence {vi}i∈N ⊂ gb/rb of
non-zero vectors converging to 0 is unstable for s if

si := exp(vi)s ∈ K ′ for all i ∈ N (3.29)

and for any fixed i ∈ N the sequence

tn(b, vi) := χl0/r0(En(b))‖(bn1 )−1vi‖ (3.30)

in the variable n is unbounded. Although we do not record in this terminology the set K ′, it
should cause no confusion because K ′ will remain fixed until the last step of the proof.

By Lemma 3.15, βX,U -almost every s ∈ K ′ has an unstable sequence. We note that this
is the part of the proof where the non-atomicity of the νb’s is being used.
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Let s ∈ K ′ and {vi}i∈N be an unstable sequence for s. For all i, n and a ∈ An such that
aSnb ∈ B0 the relation (3.29) between s and si propagates to a similar relation between
s(a) and si(a). Namely, using the notations from (3.7) and (3.28)

si(a) = exp(an1 (bn1 )−1vi)s(a). (3.31)

The assumption that aSnb ∈ B0 is used in order for (3.21) to apply.
The proof of Claim 3.17 relies on showing that for arbitrarily large i ∈ N one can choose

carefully ni ∈ N and ai ∈ Ani in such a way that equation (3.31) limits to an equation
giving rise to the fact that [(βX,U )Φ

s ] is invariant under an arbitrarily small element of u0.
It is quite long and so we try to break it into steps and introduce auxiliary notation and
terminology to ease the complications.

Definition. We say that a point s ∈ K ′ satisfies hypothesis ED if there exists an unstable
sequence {vi}i∈N for s such that for all ε > 0, for all i ∈ N there exists choices ni ∈ N and
ai ∈ Anis,U such that ni →∞ as i→∞ and the following hold:

ED1: For all i ∈ N one has that the points s(ai), si(ai) ∈ K.
ED2: ‖(ai)ni1 (bni1 )−1vi‖ � ε.
ED3: limi→∞ dP∧4g((ai)

ni
1 (bni1 )−1(Rṽi ∧ (∧3rb)), (∧4g)aiSnib[ωl0 ]) = 0, where ṽi ∈ gb is a

representative of vi.

We note that property ED1 implies that the B-coordinate of the points s(ai) and si(ai),
which is aiS

nib, belongs to B0 by our assumption on E. As explained above, this implies
that (3.31) holds and moreover, from the definition of B0 we have the equality

(ai)
ni
1 (bni1 )−1ξb = ξaiSnib. (3.32)

We complete the proof of Claim 3.17 in two steps by proving:

(Step 1) βX,U -almost every s ∈ K ′ satisfies hypothesis ED.
(Step 2) If s ∈ K ′ satisfies hypothesis ED then Stabu0 [(βX,U )Φ

s ] = u0.

Indeed, by part (3) of Lemma 3.13, βX,U (K ′) ≥ 1 − 2δ, and since δ is arbitrary the claim
follows.

Proof of Step 1. As mentioned before, Lemma 3.15 implies that for βX,U -almost every
s ∈ K ′ there exists an unstable sequence {vi}i∈N. Therefore, there is no problem fixing
s ∈ K ′ and {vi}i∈N a corresponding unstable sequence. Let ε > 0.

Fix i ∈ N and consider the sequence tn = tn(b, vi) from (3.30). Note that since the
support of µ is compact, the ratios tn+1/tn are bounded by a constant depending on µ.
By the definition of the instability of {vi}i∈N for s, the sequence tn is unbounded and
since t1 is arbitrarily small for all large i, we conclude that for all large i the number
ni := min{n : tn > ε} is well defined and in that case

tni � ε. (3.33)

Note that since vi → 0, we must have that ni → ∞ as i → ∞. The existence of ai ∈ Ani
for which properties ED1-ED3 will hold will be established by probabilistic means using
the conditional probability measure µ⊗nis,U discussed in §3.3.

First we demonstrate that property ED1 holds for a set of large µ⊗nis,U -measure. Since

ni →∞ and both of s and si are elements of K ′, by Lemma 3.13, which we used to obtain
K ′ and K, we have that: For βX,U -almost every s ∈ K ′,

µ⊗nis,U ({a ∈ Ani : s(a), si(a) ∈ K}) > 1− 2δ for all i� 1. (?)
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We turn to property ED2. Observe that for c ∈ B0 and v ∈ gc/rc,

‖v‖ =
‖ṽ ∧ uc‖
‖uc‖

(3.34)

where we will use ṽ ∈ gc to denote a choice of a representative for v and uc to denote a
non-zero element of ∧3rc (note that the quantity in (3.34) does not depend on our choices).
This will allow us to obtain ED2 by considering the representations of H on ∧4g and ∧3g.

For i ∈ N we use the notation

vi := (bni1 )−1(ṽi ∧ ub) and v′i := (bni1 )−1ub. (3.35)

For a ∈ Ani our goal is to understand the norm in ED2. We will compare the quantities

‖ani1 (bni1 )−1vi‖ =
‖ani1 vi‖
‖ani1 v′i‖

and tni(b, vi) =
χl0(En(b))‖vi‖
χr0(En(b))‖v′i‖

(3.36)

and show that they are of the same order of magnitude. We start by relating the numerators
of the ratios in (3.36) and then consider the corresponding denominators.

We apply Corollary 3.10 to the representation of H on V = ∧4g and for the weight
ωl0 ∈ Hz(V ) and the vector τωl0

(vi) ∈ V [ωl0 ] and conclude that for βX,U -almost every

s ∈ K ′,
µ⊗nis,U ({a ∈ Ani : ‖ani1 τωl0

(vi)‖ � χl0(Eni(b))‖τωl0
(vi)‖}) > 1− δ for all i� 1. (3.37)

We wish to replace in (3.37) the term ‖τωl0
(vi)‖ by ‖vi‖ and ‖ani1 τωl0

(vi)‖ = ‖τωl0
(ani1 vi)‖

by ‖ani1 vi‖. For this we use parts (2) and (3) of Lemma 2.7. In order for Lemma 2.7 to
be applicable we need that vi ∈ gSnib ∧ (∧3rSnib) and ani1 vi ∈ gaSnib ∧ (∧3raSnib). The first
containment holds since b ∈ B0 and the relevant spaces vary equivariantly. For the second
containment, if we require a to be also in the set measured in (?) then aSnib ∈ B0 as well
and the relevant equivariance applies. This leads us to conclude from (?) and (3.37) that
for βX,U -almost every s ∈ K ′,

µ⊗nis,U ({a ∈ Ani : ‖ani1 vi‖ � χl0(Eni(b))‖vi‖}) > 1− 3δ for all � 1. (3.38)

Regarding the denominators in (3.36), we claim that for a’s which are measured in (?),

‖ani1 v′i‖ = χr0(Eni(aS
nib))‖v′i‖ � χr0(Eni(b))‖v′i‖ for all i� 1. (3.39)

The first equality follows from an application of Lemma 2.5 to the vector v′i = (bni1 )−1ub ∈
rSnib together with the observation that aSnib ∈ B0 which uses our assumption that a
belongs to the set measured in (?). The approximation part in (3.39) comes from the fact
that a ∈ suppµ⊗nis,U = Anis,U satisfies En(aSnib) E−1

ni (b) ∈ U .

We thus conclude from (3.36), (3.38) and (3.39) that for βX,U -almost every s ∈ K ′,
µ⊗nis,U ({a ∈ Ani : tni(b, vi) � ‖a

ni
1 (bni1 )−1vi‖}) ≥ 1− 3δ for all i� 1.

Taking into account (3.33) we see that for βX,U -almost every s ∈ K ′,
µ⊗nis,U ({a ∈ Ani : ‖ani1 (bni1 )−1vi)‖ � ε}) > 1− 3δ for all i� 1. (??)

Equation (??) will take care of ED2.
We now turn to ED3. Fix i� 1 and let k ∈ N. We apply Lemma 3.11 to the represen-

tation V = ∧4g with ρ = 1/k, the weight ωl0 ∈ Hz(V ), the vector τωl0
(vi) where vi is as

in (3.35) and the flag η = ξ(Snib) ∈ H/P . The statement of Lemma 3.11 in this case and
in particular equation (3.15), implies that: For βX,U -almost any s ∈ K ′,
µ⊗nis,U ({a ∈ Ani : dPV (ani1 Rτωl0

(vi), a
ni
1 VSnib[ωl0 ]) < 1/k}) > 1− δ for all i� 1. (3.40)
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If we also know that if aSnib ∈ B0, which happens whenever a is in the set measured in
(?), then we have the equality ani1 VSnib[ωl0 ] = VaSnib[ωl0 ] and thus we conclude from (3.40)
that for βX,U -almost every s ∈ K ′,

µ⊗nis,U ({a ∈ Ani : dPV (ani1 Rτωl0
(vi), VaSnib[ωl0 ]) < 1/k}) > 1− 3δ for all i� 1. (3.41)

Next we replace in (3.41) the vector τωl0
(vi) by vi. To justify this passage we apply

Lemma 3.12 to the representation V with ρ = 1/k, ωm = ωl0 and the vector vi. Note
that Lemma 3.12 is applicable in light of Lemma 2.7. The statement of Lemma 3.12, in
particular equation (3.16), implies that: For βX,U -almost every s ∈ K ′,

µ⊗nis,U ({a ∈ Ani : dPV (ani1 Rvi, a
ni
1 Rτωl0

(vi)) < 1/k}) > 1− δ for all i� 1. (3.42)

Equations (3.41) and (3.42) and the triangle inequality imply that: For βX,U -almost every
s ∈ K ′, for any positive integer k,

µ⊗nis,U ({a ∈ Ani : dPV (ani1 Rvi, VaSnib[ωl0 ]) < 2/k}) > 1− 4δ for all i� 1. (? ? ?)

We then choose {ik}k∈N with ik →∞, such that (? ? ?) holds.
To tie things up and finish this part of the proof we note that for k � 1, equations (?),

(??) and (? ? ?) hold for i = ik. Since δ < 1/10, we deduce that for βX,U -almost every
s ∈ K ′ there must exist ni ∈ N and ai ∈ Anis,U such that properties ED1-ED3 are satisfied
and so s satisfies hypothesis ED. This concludes the proof of Step 1.

Proof of Step 2. Let s ∈ K ′ satisfy hypothesis ED with respect to the unstable sequence
{vi}i∈N and let ε > 0 be arbitrarily small. Let {ni}i∈N and ai ∈ Anis,U be such that ni →∞
as i→∞ and properties ED1-ED3 hold.

By taking a subsequence if necessary and using ED1 we may assume that

lim
i→∞

s(ai) =: r1 ∈ K and lim
i→∞

si(ai) =: r2 ∈ K.

We claim that the relation (3.31) between s(ai) and si(ai) limits to the fact that

there exists w ∈ u0 such that ‖w‖ � ε and Φw(r1) = r2. (3.43)

We prove (3.43): The B-coordinate of s(ai) and si(ai) equals to aiS
nib and converges

to the B-coordinate of r1 and r2 which we denote by a ∈ B0 (note that this time a is an
infinite sequence). Let us denote for c ∈ B0 by mc the orthogonal complement of rc in g
and by Πc : gc → mc the orthogonal projection. Recall that ṽi ∈ gb denotes a representative
of vi. With this notation the relation (3.31) may be rewritten as

si(ai) = exp(ΠaiSnib((ai)
ni
1 (bni1 )−1ṽi))s(ai). (3.44)

Property ED2 says that

‖ΠaiSnib((ai)
ni
1 (bni1 )−1ṽi)‖ = ‖(ai)ni1 (bni1 )−1vi‖ � ε.

Note that ΠaiSnb((ai)
ni
1 (bni1 )−1ṽi) ∈ maiSnib and that projectively maiSnib → ma because

of the continuity of s′ 7→ mb′ on K, which follows from the continuity of s′ 7→ ξb′ on K
guaranteed by Lemma 3.13. Thus, after taking a subsequence if necessary we get

lim
i→∞

ΠaiSnib((ai)
ni
1 (bni1 )−1ṽi) = ṽ ∈ ma where ‖ṽ‖ � ε.

Equation (3.44) thus limits to the fact that

r2 = exp(ṽ)r1. (3.45)
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In fact, due to ED3, the aforementioned continuity and (3.32) we have that

Rṽ ∧ ra = lim
i→∞

RΠaiSnib((ai)
ni
1 (bni1 )−1ṽi) ∧ raiSnib

= lim
i→∞

R(ai)
ni
1 (bni1 )−1ṽi ∧ raiSnb

= lim
i→∞

(ai)
ni
1 (bni1 )−1(ṽi ∧ rb) ∈ lim

i→∞
(∧4g)aiSnb[ωl0 ] = (∧4g)a[ωl0 ].

By part (4) of Lemma 2.7 we deduce that v ∈ la. Since the map ma ∩ la → ua = la/ra is
an isometry and since the image of s in H/N is compact the map Ads(ξ(a)) : u0 → ua is
an isomorphism of bounded norm. It follows that if we denote by w ∈ u0 the image of ṽ
then ‖w‖ � ε and by the definition of the horocyclic flow given in (3.2), equation (3.45)
transforms into (3.43).

After establishing the alignment (3.43) we arrive at the endgame. By (3.27) for all i ∈ N,

(βX,U )Φ
s(ai)

= (βX,U )Φ
s and (βX,U )Φ

si(ai)
= (βX,U )Φ

si

because T̂ni(s) = T̂ni(s(ai)) and T̂ni(si) = T̂ni(si(ai)). Since the LWM-map is continuous
on K as it is the output of Lemma 3.13, we can take limits in the above and get that

(βX,U )Φ
s = (βX,U )Φ

r1 = (βX,U )Φ
r2 . (3.46)

Property P4 of the LWM-map and equations (3.46) and (3.43) imply w ∈ Stabu0([(βX,U )Φ
s ]).

Since the latter is a closed subgroup of u0 ' R and ε is arbitrarily small we deduce
that Stabu0([(βX,U )Φ

s ]) = u0 which concludes the proof of Step 2 and by that the proof
of Claim 3.17. �

4. Proof of Theorem 2.1(c)

Proof of Theorem 2.1(c). Assume that we are in Case II and that ν ∈ Pµ(X) is µ-ergodic
and not the natural lift. Then, according to Theorem 2.1(a)

β({b ∈ B : νb has atoms}) > 0.

The equivariance of the νb’s and the ergodicity of the shift map imply that the above set
has measure 1. Similarly, if w(b) denotes the maximal weight of an atom of νb then the
equivariance implies that w = w(b) is constant β-almost surely. The same equivariance
implies that {(b, x) ∈ BX : νb({x}) = w} is T -invariant and since it is of positive βX -
measure, it must be of measure 1 by ergodicity of T . That is to say, for β-almost every
b ∈ B the limit measure νb is purely atomic and gives the same mass w to each of its
atoms. Since νb is a probability measure we deduce that there exists k ∈ N such that
w = 1/k and νb has exactly k atoms. By Proposition 2.2 we also know that β-almost surely
νb ∈ P(π−1(pb)).

Under the assumption that Γ is discrete and Zariski dense in SO(Q)(R) we have by [Fur02,
Theorem 2.21] (see also [Led85, Kai00, Kai85]) that the Furstenberg measure ν̄Gr2(R3) on

Gr2(R3) is the Poisson boundary of (Γ, µ). Moreover, if µ is absolutely continuous with
respect to the Haar measure on SO(Q)(R) and contains the identity in the interior of its
support then the same conclusion follows from [Fur02, Theorem 2.17] (see also [Fur63b,
Theorem 5.3]). By combining [Fur02, Proposition 2.25, Theorem 2.31 parts (a) and (b)] this
implies that any extension of the Furstenberg measure is a measure preserving extension.
We disintegrate ν into a collection of measures {νp}p∈Gr2(R3) with respect to the map π as in

Definition 1.5. Since we have established that ν is a measure preserving extension of ν̄Gr2(R3)
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the composition map b 7→ pb 7→ νpb is equivariant. Using the fact that (b 7→ pb)∗β = ν̄Gr2(R3)

we have

ν =

∫
Gr2(R3)

νpdν̄Gr2(R3) (p) =

∫
B
νpbdβ (b) , (4.1)

Since the collection {νpb}b∈B is equivariant and the measures {νb}b∈B are the unique equi-
variant collection satisfying ν =

∫
B νbdβ (b) we deduce that νb = νpb for β-almost every

b ∈ B. Thus we have shown that ν is a measure preserving k-extension of ν̄Gr2(R3). �

As mentioned in Remark 1.9 the statement of Theorem 1.8 is amplified in the case µ
satisfies assumption (b) to the fact that the natural lift is the unique µ-stationary measure.
To see this, note that when a Γµ = SO(Q)(R)-orbit intersects a fibre of π above a plane
in the circle of isotropic planes C = supp ν̄Gr2(R3) it intersects it in infinitely many points.
Thus the possibility of the existence of an ergodic finite extension is excluded.

5. Non-escape of mass

In this section we construct a proper function on X which can be thought of like a height
function. We will show that this function is contracted by the averaging operator induced
by µ, where µ is as in Case I or Case II. The existence of such a function is important in
two ways. First, it implies that almost surely the random walks of µ on X are recurrent
in a strong sense. This recurrence will imply that the limiting distribution of almost every
random walk is a probability measure or in other words that mass does not escape. In
turn this will allow us to conclude Theorem 2.1(d) at the end of this section. Second, this
function will also play an important role in the proof of Theorem 2.1(b), given in §6.

5.1. Replacing µ by µ∗n0. Before starting the construction of the contracted function we
note that the statements in Theorem 2.1 are not affected by replacing µ by µ∗n0 . Using
Lemma 2.10 we choose n0 > 0 and make the replacement

µ := µ∗n0

so that for some L0 > 0 the following holds:

(1) In both Case I and Case II, for all v ∈ R3 r {0} and w ∈ ∧2R3 r {0} one has∫
G

log

(
‖gv‖
‖v‖

/‖gw‖1/2
‖w‖1/2

)
dµ (g) > L0. (5.1)

(2) In case Case I, for all p ∈ Gr2(R3), u ∈ ∧3rp r {0} and v ∈ gr rp one has∫
G

log

(
‖g(v ∧ u)‖
‖v ∧ u‖

/‖gu‖
‖u‖

)
dµ (g) > L0. (5.2)

5.2. The contraction hypothesis. Suppose thatG acts continuously on a locally compact
metric space Y and η ∈ P(G), then for a measurable f : Y → [0,∞) define

Aη f (x) :=

∫
G
f (gx) dη (g) .

Recall that a function f : Y → [0,∞) is said to be proper if f−1 (C) is pre-compact for
all compact subsets C ⊂ [0,∞). It is said to be lower semi-continuous if the sublevel sets
f−1([0,M ]) are closed for any M ≥ 0.
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Definition 5.1. A function f : Y → [0,∞) satisfies the contraction hypothesis with respect
to η on Y if there exist constants c < 1 and b > 1 such that

Aη f (y) ≤ cf (y) + b for all y ∈ Y
We use the notation CHη(Y ) for the set of all such functions.

Our next goal is to construct a function f ∈ CHµ (X). The idea constructing con-
tracted functions in order to establish some kind of recurrence can be traced back to the
paper [EM04] of A. Eskin and G. Margulis. These ideas were later taken up and used by
Benoist and Quint in [BQ12], [BQ11] and [BQ13b]. The following lemma is an extension
of [BQ13b, Lemma 6.12] which in turn is an extension of [EM04, Lemma 4.2]. But first we
introduce a definition.

Definition 5.2. Let F be a family of positive functions on G and η ∈ P(G) such that:

(1) There exist δ0 > 0 and 0 ≤ I0 <∞ such that∫
G

sup
f∈F

f (g)δ0 dη (g) ≤ I0.

(2) There exists L0 > 0 such that

inf
f∈F

∫
G

log f (g) dη (g) ≥ L0.

Then, we say that F is uniformly (δ0, I0, L0)-expanded by η.

Using this definition we prove a very mild generalisation of [BQ13b, Lemma 6.12]. The
proof is identical to the one given there.

Lemma 5.3. Let η ∈ P(G) and (δ0, I0, L0) be positive parameters. Let F be a family
of positive functions on G uniformly (δ0, I0, L0)-expanded by η. Then there exists δ1 =
δ(δ0, I0, L0) > 0 such that for all 0 < δ ≤ δ1 there exists 0 < c = c(δ, L0) < 1 such that for
all f ∈ F one has ∫

G
f (g)−δ dη (g) ≤ c.

Proof. Set δ1 := min
{
δ0
2 ,

L0δ20
4I0

}
and let η ∈ P(G) be such that F is uniformly (δ0, I0, L0)-

expanded according to Definition 5.2. We will use the facts that

exp (x) ≤ 1 + x+
x2

2
exp (|x|) and x2 ≤ exp (|x|)

for all x ∈ R. Then for any f ∈ F and δ ∈ R we have∫
G
f (g)−δ dη (g) =

∫
G

exp (−δ log f (g)) dη (g)

≤ 1− δ
∫
G

log f (g) dη (g) +
δ2

2

∫
G

(log f (g))2 f (g)δ dη (g)

and

(log f(g))2 ≤ 4

δ2
0

f(g)δ0/2.

Using these inequalities together with conditions (1) and (2) of Definition 5.2 and our choice
of δ1, we see that for all f ∈ F and 0 < δ < δ1 one has∫

G
f (g)−δ dη (g) ≤ 1− δL0 + 2

δ2

δ2
0

I0 ≤ 1− δ

2
L0 < 1,
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so the statement holds with c = 1− δ
2L0 as required. �

Remark 5.4. It will be important for us that given η ∈ P(G) and a family of positive
functions F uniformly (δ0, I0, L0)-expand by η the constants δ1 and c whose existence is
assured by Lemma 5.3 are uniform over all measures in the set

{η ∈ P(G) : F is uniformly (δ0, I0, L0)-expanded by η}.

Let Λ denote a 2-lattice in R3 and let [Λ] ∈ X denote the corresponding homothety class.
We denote by |Λ| the co-volume of Λ in the plane it spans. For any v ∈ Λ we define the
normalised length of v with respect to Λ to be

NΛ(v) :=
‖v‖
|Λ|1/2

.

This quantity already appeared implicitly in the proof of Proposition 2.4. We let,

fΛ,v (g) :=
NgΛ(gv)

NΛ(v)

That is, fΛ,v(g) is the cocycle that measures by which factor v is stretched under the action
of g taking into account the normalisation factors which make Λ and gΛ of co-volume 1 in
their respective planes.

Let
F := {fΛ,v}[Λ]∈X,v∈Λ .

The main step towards constructing a function in CHµ(X) is the following.

Proposition 5.5. Let µ be as in Case I or Case II and suppose that (5.1) hold. Then F is
uniformly (δ0, I0, L0)-expanded by µ for some L0 as in (5.1) and some positive δ0 and I0.

Proof. We verify conditions (1), (2) of Definition 5.2. The validity of condition (1) is
immediate with say δ0 = 1 and some I0 < ∞ from the assumption that µ is compactly
supported. For condition (2) we note that if Λ = spanZ{u,w}, then

fΛ,v(g) =
‖gv‖

‖g(u ∧ w)‖1/2
/ ‖v‖
‖u ∧ w‖1/2

for all v ∈ Λ. It follows that condition (2) is implied by equation (5.1) which holds for µ as
indicated in §5.1. �

For [Λ] ∈ X we set

uX([Λ]) :=
(

minv∈Λr{0}NΛ(v)
)−1

.

It is clear from the definition of NΛ that uX is well defined in the sense that its value does
not depend on the choice of Λ from [Λ]. Moreover, by Mahler’s compactness criterion that
uX : X → [0,∞) is a continuous proper function. The following proposition establishes the
existence of a function which satisfies the contraction hypothesis of Definition 5.1.

Proposition 5.6. Let µ be as in Case I or Case II and suppose that (5.1) and (5.2) hold.
Then, for all δ sufficiently small uδX ∈ CHµ (X).

Proof. Given M > 0 we split X into X≤M = u−1
X ([0,M ]) and X>M = u−1

X ((M,∞)). We

claim that there exists M > 0 such that if [Λ] ∈ X>M then there exists a unique (up to
sign) vector vmin(Λ) ∈ Λ such that uX([Λ]) = NΛ(vmin(Λ)) and uX(g[Λ]) = NgΛ(gvmin(Λ))
for all g ∈ suppµ. First we note that because we are dealing with 2-lattices for any M ≥ 1
and [Λ] ∈ X>M the vector vmin(Λ) is well defined up to sign. Now set M := supg∈suppµ‖g‖

2
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and suppose there exists v′ ∈ gΛ with v′ 6= gvmin(Λ) and such that uX([Λ]) = NgΛ(v′).
Then note that

‖g−1v′‖
‖g‖|gΛ|1/2

≤ NgΛ(v′) ≤ NgΛ(gvmin(Λ)) ≤ ‖g‖‖vmin(Λ)‖
|gΛ|1/2

.

Since g−1v′ and vmin cannot be colinear we see that this is a contradiction if ‖vmin(Λ)‖ <
1/M since in this case we would get that Λ contains two non colinear vectors with norm
less than 1.

Next suppose that [Λ] ∈ X>M and write Λ = spanZ{u,w} so that for δ > 0 one has

Aµ u
δ
X([Λ]) =

∫
G
uδX(g[Λ])dµ (g) =

∫
G

(
‖g(u ∧ w)‖1/2

‖gvmin(Λ)‖

)δ
dµ (g) .

By Proposition 5.5 and Lemma 5.3, if δ is small enough, there exists 0 < c < 1 such that∫
G

(
‖g(u ∧ w)‖1/2

‖gvmin(Λ)‖

)δ
dµ (g) ≤ c

(
‖(u ∧ w)‖1/2

‖vmin(Λ)‖

)δ
= uδX([Λ]).

Fix δ and let 0 < c < 1 be such a number. If [Λ] ∈ X≤M then from the compactness of
suppµ and the properness uδX we conclude that Aµ u

δ
X([Λ]) ≤ b(M, δ, µ) = b. In any case

we have
Aµ u

δ
X([Λ]) ≤ cuδX([Λ]) + b,

that is, uδX ∈ CHµ(X) as desired. �

Using the existence of a proper function in CHµ(X) we can give a proof of Theorem 2.1(d)
by citing Benoist and Quint.

Proof of Theorem 2.1(d). Let x ∈ X be given. By [BQ12, Corollary 2.2], any weak-* accu-
mulation point of the sequence 1

n

∑n
k=1 µ

∗k ∗ δx is a probability measure on X. It is also
evidently µ-stationary.

Moreover, it follows from [BQ13a, Corollary 3.3] that for all x ∈ X, for β-almost every
b ∈ B, any weak-* accumulation point of the sequence 1

n

∑n
k=1 δb1kx

is µ-stationary. Thus,

we are only left to establish that β-almost surely, such an accumulation point is a prob-
ability measure. This is again a consequence of the existence of a function in CHµ(X).
Indeed, [BQ13a, Example 3.1, Proposition 3.9] implies this exact statement since the con-
tracted function uX is proper. �

6. The limit measures are non-atomic

In this section we assume µ is as in Case I and also assume the validity of (5.1), (5.2) as
in §5.1 which is ensured by replacing µ by µn0 if necessary. The main goal of this section is
to prove Theorem 2.1(b).

6.1. Metric considerations. We will need to have some understanding of a convenient
metric on X. In order to do this we study the local structure of X. For p ∈ Gr2(R3) let

Πp : g→ (rp)
⊥ := mp,

be the orthogonal projection where the inner product in the above definition is supposed to
be K-invariant. It is important to note that Πp is not equivariant. We use the convention
that for any representation V of H the notation ‖g‖V stands for the operator norm of g on
V .

Let dX denote a metric on X induced by a Riemannian metric obtained in the following
manner: For a point x ∈ X the derivative at the identity deαx of the orbit map αx : G→ X,
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g 7→ gx satisfies ker deαx = rp where p is the plane of x. Since deαx is of full rank, it restricts

to a linear isomorphism deαx : mp = r⊥p → TxX. We use this isomorphism to transport the
inner product structure that mp inherits from g to TxX thus inducing a Riemannian metric
on X.

If we denote by cg conjugation by g then for any x ∈ X we have the following commutative
diagram and its derivative:

G

cg
��

αx // X

g

��

G αgx
// X

g

Adg

��

deαx// TxX

dxg

��

g
deαgx
// TxX

The fact that the horizontal maps on the right diagram are linear surjections of norm at
most 1 implies that the norm of dxg : TxX → TgxX is bounded by ‖g‖g. In particular, since
the metric dX is defined in terms of length of paths, it satisfies the important inequality

dX(gx, gy) ≤ ‖g‖g dX(x, y) for all g ∈ G and x, y ∈ X. (6.1)

Consider X × g as a Riemannian manifold and consider X∗ := {(x, v) : v ∈ mπ(x)} as a
submanifold. The map ψ : X∗ → X ×X defined by ψ(x, v) = (x, exp(v)x) is smooth and
has the property that on the submanifold X∗0 = {(x, 0) ∈ X∗} the derivative

d(x,0)ψ : TxX ⊕mπ(x) → TxX ⊕ TxX

is an isometry. In fact, it equals the identity after identifying TxX with mπ(x) as described
earlier. Since X∗ and X × X are of the same dimension we conclude that there is an
open neighbourhood X∗0 ⊂ V0 ⊂ X∗ that is mapped by ψ diffeomorphically onto an open
neighbourhood ∆X = ψ(X∗0 ) ⊂ U0 ⊂ X × X. Given (x, y) ∈ U0 we define the orthogonal
displacement vector ox,y between x and y to be the unique vector v ∈ mπ(x) such that
(x, v) ∈ V0 and ψ(x, v) = (x, y), or in other words y = exp(v)x. We prove the following.

Lemma 6.1. For any compact set E ⊂ G and all 0 < c < 1 there exists a neighbourhood
of the diagonal U ⊂ X ×X such that for all (x, y) ∈ U and g ∈ E ∪ E−1 ∪ {e} one has:

(1) The orthogonal displacement ogx,gy is well defined.
(2) The following inequality holds c‖ogx,gy‖ ≤ dX(gx, gy) ≤ c−1‖ogx,gy‖.
(3) For all u ∈ ∧3rπ(x) r {0} one has c‖ogx,gy‖ ≤ ‖g(ox,y ∧ u)‖/‖gu‖ ≤ c−1‖ogx,gy‖.

Proof. Throughout the proof we may assume that E = E ∪ E−1 ∪ {e} by enlarging it if
necessary. First we prove (1). Let U0 be the neighbourhood of ∆X on which the orthogonal
displacement is defined. We first show that ∩g∈EgU0 contains a neighbourhood of ∆X . This
is done by showing that for any compact K ⊂ X we have

dX×X(K ×K r ∩g∈EgU0,∆X) > 0. (6.2)

To this end, let K ⊂ X be a compact set. By (6.1) and the compactness of E, we deduce
from the fact that

dX×X((K ×K r U0),∆X) > 0,

that

dX×X(∪g∈Eg(K ×K r U0),∆X) > 0.

However, since K×Kr∩g∈EgU0 ⊂ ∪g∈Eg(K×KrU0) the previous equation implies (6.2)
as claimed.
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We conclude that ∩g∈EgU0 contains a neighbourhood U1 of ∆X and deduce that for any
g ∈ E and (x, y) ∈ U1, (gx, gy) ∈ U0 so that the orthogonal displacement ogx,gy is well
defined.

Now we will prove (2). Let 0 < c < 1 be given and for A,B ∈ R write A ∼c B to denote
cA < B < c−1A. Consider the map ψ : X∗ → X ×X and the neighbourhood V0 as defined
before the statement of the lemma. Let V1 := ψ−1(U1) ⊂ V0. Since the differential dψ is
an isometry on the submanifold X∗0 and E is compact there is a neighbourhood V2 ⊂ V1

of X∗0 such that for all (x, v) ∈ V2 and g ∈ E one has ‖d(gx,gv)ψ
±1‖ ∼c 1. The image

U2 := ψ(V2) ⊂ U1 is then a neighbourhood of ∆X . Next we replace V2 and U2 by even
smaller neighbourhoods V3 and U3 := ψ(V3) of X∗0 and ∆X respectively, so that for all
(x, v) ∈ V3 the whole interval {(x, tv) : t ∈ [0, 1]} is contained in V2. Similarly, for any
(x, y) ∈ U3, the geodesic path between (x, x) and (x, y) is contained in U2.

Given (x, y) ∈ U3 let ox,y denote the corresponding orthogonal displacement so that
ψ(x, ox,y) = (x, y). Since the path ζ(t) = (x, tox,y) is the geodesic in X∗ from (x, 0) to
(x, ox,y) and is of length ‖ox,y‖ and since it is contained in V2 on which ‖dψ‖ ∼c 1, we
conclude that the image path ψ(ζ(t)) connecting (x, x) to (x, y) has length ∼c ‖ox,y‖. But,
the distance in X×X from (x, x) to (x, y) is exactly dX(x, y) and so we obtain the inequality
dX(x, y) < c−1‖ox,y‖ for all (x, y) ∈ U3 and g ∈ E.

For the other inequality, let (x, y) ∈ U3, g ∈ E and let ζ(t) denote the geodesic path
between (x, x) to (x, y) which is of length dX(x, y) as mentioned earlier. By the choice
of U3, ζ(t) ∈ U2 for all t and therefore, on applying ψ|−1

U2 we obtain a path connecting

(x, 0) and (x, ox,y) whose length is < c−1 dX(x, y). Since the distance between (x, 0) and
(x, ox,y) is ‖ox,y‖ we obtain the inequality ‖ox,y‖ < c−1 dX(x, y). In total we showed that
for all (x, y) ∈ U3 and g ∈ E one has dX(x, y) ∼c ‖ox,y‖. To finish, we replace U3 by U4 a
neighbourhood of ∆X contained in ∩g∈EgU3 (in a similar fashion to the proof of part (1))
and conclude that for all (x, y) ∈ U4 and all g ∈ E we have that (gx, gy) ∈ U3 and therefore
dX(gx, gy) ∼c ‖ogx,gy‖ as desired

Finally we prove (3). Let U = U4 be as in the proof of part (2) and let (x, y) ∈ U . Note
that ‖g(ox,y∧u)‖/‖gu‖ = ‖Πgx(gox,y)‖ for all u ∈ ∧3rπ(x)r{0} and that both of exp(ogx,gy)
and exp(gox,y) take gx to gy so

exp(−gox,y) exp(ogx,gy) ∈ StabG(gx).

There is a neighbourhood of the identity L0 in G such that log : L0 → g is well defined.
By shrinking U if necessary we may suppose that the above product is in L0 for g ∈ E
and (x, y) ∈ U . Therefore, we may apply the logarithm and see that the result lies in
ker Πgx = rπ(gx) (which is the Lie algebra of StabG(gx)). On the other hand [Tao14, §2] we
have

log(exp(−gox,y) exp(ogx,gy)) = ogx,gy − gox,y +O(‖ogx,gy‖‖ox,y‖‖g‖g).
Applying the projection Πgx we see that

ogx,gy = Πgx(gox,y) +O(‖ogx,gy‖‖ox,y‖‖g‖g). (6.3)

Equation (6.3) together with part (2) imply that on shrinking U if necessary, the ratio
‖Πgx(gox,y)‖/‖ogx,gy‖ is bounded away from zero for (x, y) ∈ U and g ∈ E. In equation (6.3)
we take norms, use the triangle inequality and divide by ‖Πgx(gox,y)‖ to arrive at

‖ogx,gy‖
/‖g(ox,y ∧ u)‖

‖gu‖
=

‖ogx,gy‖
‖Πgx(gox,y)‖

= 1 +O(‖ox,y‖‖g‖g),

where the cancellation in the big-O is justified by the aforementioned boundedness away
from zero of ‖Πgx(gox,y)‖/‖ogx,gy‖. Now it is clear that since g ∈ E and E is compact, if U
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is chosen small enough then the big-O in the above equality is as small as we wish yielding
part (3) of the proposition. �

6.2. A criterion for non-atomicity of the limit measures. In this section we leave for
a moment the space X and work in an abstract setting. We follow closely [BQ13b, §6]. We
assume throughout that we are working in the following setting:

S1: Y is a locally compact metric space on which G acts.
S2: There exists a proper lower semi-continuous contracted function uY ∈ CHµ (Y ).

Remark 6.2. In §6.3 we will apply the results of this section to Y = X × X with the
function uX×X(x, y) := uδX(x)+uδX(y) ∈ CHµ(X×X), where δ > 0 is small enough so that

uδX ∈ CHµ(X) by Proposition 5.6.

For M > 0 we consider the compact set

YM := {y ∈ Y : uY (y) ≤M} .
For y ∈ YM and b ∈ B we define the stopping time

ρM,y (b) := inf
{
n ≥ 1 : b1ny ∈ YM

}
and refer to it as the first return time to YM . It is a stopping time in the sense that
{ρM,y(b) ≤ n} is independent from bj for any j > n. The sets YM have remarkable recurrence
properties as reflected by the following proposition.

Proposition 6.3. Suppose that S1 and S2 hold. Then for any M large enough there exists
c > 1 such that

sup
y∈YM

∫
B
cρM,y(b)dβ (b) <∞.

In particular the first return time is integrable and β-almost surely finite.

Proof. This is [BQ13b, Definition 6.1 and Proposition 6.3]. �

The first return time naturally defines a map ρ̂M : B × Y → G called the first return
cocycle where

ρ̂M,y (b) := b1ρM,y(b).

In turn, the first return cocycle induces a collection of transition probability measures
µM,y ∈ P (G) which are the images of β by the first return cocycle. In other words for
y ∈ YM and f ≥ 0 a measurable function on G,∫

G
f(g)dµM,y (g) :=

∫
B
f(ρ̂M,y(b))dβ (b) =

∫
B
f(b1ρM,y(b))dβ (b) .

Finally the transition probability measures µM,y induce a Markov operator called the first
return Markov operator which is denoted by AM,µ and is defined as follows. For any f ≥ 0
measurable function on YM

AM,µ f(y) :=

∫
G
f (gy) dµM,y (g) .

Extending Definition 5.1 we say that f ∈ CHAM,µ (YM ) if f : YM → [0,∞] is such that there
exists constants c < 1, b > 0 satisfying

AM,µ f(y) ≤ cf (y) + b for all y ∈ YM .
We will prove Theorem 2.1(b) by an application of the following criterion. It shows that
one can deduce the non-atomicity of the limit measures of ν ∈ Pµ(Y ), for Y as above, if one
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can build functions satisfying the contraction hypothesis on bounded parts of Y ×Y r∆Y ,
where ∆Y denotes the diagonal copy of Y in Y × Y .

Proposition 6.4. Suppose that S1 and S2 hold. Consider the product space Y × Y on
which G acts diagonally and consider the function uY×Y (y1, y2) := uY (y1) + uY (y2) so that
uY×Y ∈ CHµ(Y ×Y ). Let (Y ×Y )M and µM,(y1,y2) and AM,µ be the sublevel sets, transition
probability measures and Markov operator associated to the action of G on Y × Y with
respect to uY×Y .

If for every large enough M there exists a proper continuous function vM : (Y × Y )M r
∆Y → [0,∞) such that vM ∈ CHAM,µ((Y ×Y )M r∆Y ), then for any atom-free ν ∈ Pµ(Y ),
the limit measures are β-almost surely non-atomic

Proof. This follows from [BQ13b, Proposition 6.16 and Proposition 6.17]. �

We continue to collect results from [BQ13b] that will allow us to construct the functions
vM in Proposition 6.4.

Proposition 6.5. Suppose that S1 and S2 hold. Then, if N : G→ [0,∞) is a continuous
submultiplicative function, for any M large enough there exists δ > 0 such that

sup
y∈YM

∫
G
N (g)δ dµM,y (g) <∞.

Proof. This is [BQ13b, Definition 6.1, Proposition 6.3 and Proposition 6.7]. Notice that we
are assuming µ is compactly supported so it has finite exponential moments with respect
to N in the terminology of [BQ13b, Definition 6.6]. �

For the following proposition we give a full proof. This is a slight upgrade of [BQ13b,
Lemma 6.10] but as far as we could tell the proof there is incorrect.

Proposition 6.6. Suppose that S1 and S2 hold. Let M be large enough so that Proposi-
tion 6.3 is applicable and in particular, the stopping times {ρM,y}y∈YM are integrable.

Let G act on a space W and assume that f : G ×W → R is an additive cocycle in the
sense that f(gh,w) = f(g, hw) + f(h,w) for all g, h ∈ G and w ∈W . Assume that:

(1) There exists J0 > 0 such that supw∈W ‖f(−, w)‖L∞(G,µ) < J0.

(2) There exists L0 > 0 such that infw∈W
∫
G f(g, w)dµ (g) > L0.

Then, for all w ∈W and y ∈ YM we have that f(−, w) ∈ L1(G,µM,y) and moreover

inf
w∈W,y∈YM

∫
G
f(g, w)dµM,y (g) ≥ L0. (6.4)

Proof. Let B denote the Borel σ-algebra of B and ρ : B → N be an integrable stopping time.
That is,

∫
B ρdβ < ∞ and for all n ∈ N one has {b : ρ(b) ≤ n} is measurable with respect

to the sub-σ-algebra Bn of B generated by the cylinder sets obtained by specifying the first
n co-ordinates. Let µρ := (b 7→ b1ρ(b))∗β ∈ P(G) be the push-forward of β under the almost

surely defined product map b 7→ b1ρ(b). Then, we will prove that under the assumptions (1)

and (2), for all w ∈W one has∫
G
|f(g, w)|dµρ (g) ≤ J0

∫
B
ρdβ and

∫
G
f(g, w)dµρ (g) ≥ L0

∫
B
ρdβ. (6.5)

If M is as in the statement, the stopping times {ρM,y}y∈YM are integrable so the left

inequality of equation (6.5) applied with ρ = ρM,y proves that f(−, w) ∈ L1(G,µM,y)
for all w ∈ W and y ∈ YM . Moreover, the right inequality of (6.5) applied with the same
choice of ρ implies equation (6.4) because the integral of a stopping time is at least 1.
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Fix w ∈W and for i ∈ N let Xi(b) := f(bi, b
1
i−1w), where b10 denotes the empty product,

so that by the cocycle equation

f(b1ρ(b), w) =

ρ(b)∑
i=1

Xi(b).

With this notation, we can rewrite equation (6.5) as follows∫
B

∣∣∣∣ρ(b)∑
i=1

Xi(b)

∣∣∣∣dβ (b) ≤ J0

∫
B
ρdβ and

∫
G

ρ(b)∑
i=1

Xi(b)dβ (b) ≥ L0

∫
B
ρdβ. (6.6)

Note that ∣∣∣∣ρ(b)∑
i=1

Xi(b)

∣∣∣∣ ≤ ∞∑
i=1

1{b∈B:ρ(b)≥i}(b)|Xi(b)| for all b ∈ B.

Hence, using (1) which implies that |Xi| ≤ J0 and the monotone convergence theorem, we
obtain ∫

B

∣∣∣∣ρ(b)∑
i=1

Xi(b)

∣∣∣∣dβ (b) ≤
∞∑
i=1

∫
{b∈B:ρ(b)≥i}

|Xi|dβ

≤
∞∑
i=1

β({b ∈ B : ρ(b) ≥ i})J0 = J0

∫
ρdβ.

This is the left inequality of (6.6). We now turn to the proof of the right inequality of (6.6).
Consider the sequence of random variables Zn :=

∑n
i=1(Xi−L0). Since Xi is Bi-measurable

for all i ∈ N, one has E(Zn|Bn−1) = Zn−1 + E(Xn|Bn−1)− L0. Hence, provided that

E(Xn|Bn−1) ≥ L0 β-almost surely, (6.7)

Zn is a submartingale with respect to the filtration Bn. Recall that the definition of condi-
tional expectation is given by integration with respect to the conditional measures. For all

b ∈ B the conditional measure β
Bn−1

b of β with respect to Bn−1 at b is the measure on B
given by

β
Bn−1

b = δb1 ⊗ · · · ⊗ δbn−1 ⊗ µ⊗N

It follows that for β-almost every b ∈ B we have

E(Xn|Bn−1)(b) =

∫
B
f(cn, c

1
n−1w)dβ

Bn−1

b (c) =

∫
G
f(cn, b

1
n−1w)dµ (cn) > L0,

where the last inequality follows from assumption (2). Hence (6.7) holds and Zn is a
submartingale as claimed.

It is a classical fact (see [Wil91, section 10.9]) that the process Zmin{n,ρ} is also a sub-
martingale with respect to Bn. Hence, it satisfies the inequality∫

B
Z1dβ ≤ lim inf

n→∞

∫
B
Zmin{n,ρ(b)}(b)dβ (b) . (6.8)

Since ρ is almost surely finite limn→∞ Zmin{n,ρ} = Zρ almost surely. Next we claim that
Zmin{n,ρ} is bounded by an integrable function. Note that

|Zmin {n,ρ}| ≤
∞∑
i=1

1{b∈B:ρ(b)≥i}|Xi − L0|
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and hence using (1) and the monotone convergence theorem

|Zmin {n,ρ}| ≤
∞∑
i=1

∫
{b∈B:ρ(b)≥i}

|Xi − L0|dβ

≤
∞∑
i=1

(J0 + L0)β({b ∈ B : ρ(b) ≥ i}) = (J0 + L0)

∫
B
ρdβ.

Thus, using assumption (1), (6.8) and the dominated convergence theorem we obtain

0 <

∫
B
f(b1, w)dβ (b)− L0 =

∫
B
Z1dβ ≤ lim

n→∞

∫
B
Zmin{n,ρ(b)}(b)dβ (b) =

∫
B
Zρdβ.

But from the definition of Zρ we have∫
B
Zρdβ =

∫
B

ρ(b)∑
i=1

(Xi(b)− L0)dβ (b) =

∫
B

ρ(b)∑
i=1

Xi(b)dβ (b)− L0

∫
B
ρdβ.

Putting the last two inequalities together yields the right inequality in (6.6) which finishes
the proof. �

Similarly to the scheme leading to the construction of the contracted function uκX ∈
CHµ(X) in Proposition 5.6, a key point in building the functions vM which will participate
in an application of Proposition 6.4 is showing that a certain family of functions F is
uniformly (δ0, I0, L0)-expanded by η according to Definition 5.2 for a certain choice of η.
Let

D := {(p, v) : p ∈ Gr2(R3), v ∈ gr rp}. (6.9)

For (p, v) ∈ D we choose up ∈ ∧3rp r {0} and define the multiplicative cocycle

fp,v(g) :=
‖g(v ∧ up)‖
‖v ∧ up‖

/‖gup‖
‖up‖

. (6.10)

Note that the definition of fp,v is independent of the choice of up. We set

F ′ := {fp,v}(p,v)∈D.

Proposition 6.7. Suppose that S1 and S2 hold. Then, for all large enough M and y ∈ YM ,
the family F ′ is uniformly (δ0, I0, L0)-expanded by µM,y. The parameters (δ0, I0, L0) may
depend on M but not on y.

Proof. Take M large enough so that Proposition 6.5 holds for the submultiplicative function
N(g) := ‖g‖∧4g‖g−1‖∧3g. Since supf∈F ′ f(g) ≤ N(g) it follows that there exists I0 > 0 and
δ0 > 0 such that ∫

G
sup
f∈F ′

f δ0(g)dµM,y (g) ≤ I0

for all y ∈ YM . This verifies condition (1) of Definition 5.2.
To verify condition (2) of Definition 5.2 we argue as follows. Assume M is large enough

so that Proposition 6.6 is applicable and consider the additive cocycle G × D → R given
by (g, p, v) 7→ log fp,v(g). Condition (1) of Proposition 6.6 is satisfied with some J0 because
suppµ is compact and condition (2) of Proposition 6.6 is satisfied with L0 as in (5.2) by
the discussion in §5.1. As an outcome we deduce equation (6.4) which reads as

inf
y∈YM

inf
(p,v)∈D

∫
log fp,v(g)dµM,y (g) ≥ L0.

This is exactly condition (2) of Definition 5.2. �
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As an immediate corollary of Proposition 6.7 and Lemma 5.3 we have the following.

Corollary 6.8. Suppose that S1 and S2 hold. Then, for all large enough M there exists
δ1 > 0 such that for all 0 < δ < δ1 there exists 0 < c = c(δ) < 1 such that for all (p, v) ∈ D,
y ∈ YM and up ∈ ∧3rp r {0} one has∫

G

(
‖g(v ∧ up)‖
‖gup‖

)−δ
dµM,y (g) ≤ c

(
‖(v ∧ up)‖
‖up‖

)−δ
. (6.11)

6.3. Proof of non-atomicity of the limit measures. We now apply the results of §6.2
to the space Y = X × X. We fix once and for all κ > 0 such that uκX ∈ CHµ(X) as in
Proposition 5.6. We then take

uX×X(x, y) := uκX(x) + uκX(y),

so that uX×X ∈ CHµ(X × X). We use the notions and notation of §6.2 for the G-action
on X × X and the contracted function uX×X . In particular, we have the sublevel sets
(X ×X)M , the first return times ρM,(x,y), the transition probability measures µM,(x,y) and
the Markov operator AM,µ.

Equipped with the above theory we are finally in a position to prove the following propo-
sition which shows that one can apply Proposition 6.4 in our setting.

Proposition 6.9. For all large enough M > 0 there exists a continuous proper function
vM : (X ×X)M r ∆X → [0,∞) such that

vM ∈ CHAM,µ((X ×X)M r ∆X).

Proof. Consider the submultiplicative function

R(g) := max{‖g±1‖g, ‖g
±1‖∧4g‖g

∓1‖∧3g}.
We choose M large enough and δ small enough so that Corollary 6.8 holds and Proposi-
tion 6.5 yields

sup
(x,y)∈(X×X)M

∫
G
R(g)2δdµM,(x,y) (g) =: J <∞. (6.12)

We let c < 1 be the constant satisfying (6.11). Define

vM (x, y) := dX(x, y)−δ

and view it as a function on (X ×X)M r∆X . Here dX is the metric discussed in §6.1. It is
then clear that it is continuous and proper. We are left to prove the existence of constants
c′ < 1 and b′ such that for all (x, y) ∈ (X ×X)M ,

AM,µ vM (x, y) =

∫
G
vM (gx, gy)dµM,(x,y) (g) ≤ c′vM (x, y) + b′.

We will estimate the integral by splitting the domain of integration G into a compact
piece and its complement and treat each piece separately. This splitting is done using the
submultiplicative function R introduced above.

For any T > 0 let G≤T := {g ∈ G : R(g) ≤ T} and G>T := GrG≤T . Then we have

AM,µ vM (x, y) = I1 + I2, (6.13)

where,

I1 :=

∫
G≤T

vM (gx, gy)dµM,(x,y) (g) and I2 :=

∫
G>T

vM (gx, gy)dµM,(x,y) (g) .

We first estimate I1. Fix a large T and a constant c1 < 1 and apply Lemma 6.1 to the
compact set G≤T and the constant c1 to obtain a neighbourhood of the diagonal U = UT,c1
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satisfying the conclusion of Lemma 6.1. The integral I1 is bounded separately according to
whether (x, y) ∈ U or not:
Case 1. Assume (x, y) ∈ (X ×X)M r U . By compactness

θ := inf{dX(gx′, gy′) : (x′, y′) ∈ (X ×X)M r U , g ∈ G≤T } > 0.

Hence in this case we have

I1 =

∫
G≤T

dX(gx, gy)−δdµM,(x,y) (g) ≤ θ−δ.

Case 2. Assume (x, y) ∈ (X×X)M ∩U . Let u ∈ ∧3rπ(x)r{0}. Then, by applying parts (2)
and (3) of Lemma 6.1 and using Corollary 6.8 we get

I1 =

∫
G≤T

dX(gx, gy)−δdµM,(x,y) (g)

≤ c−2δ
1

∫
G≤T

(
‖g(ox,y ∧ u)‖
‖gu‖

)−δ
dµM,(x,y) (g)

≤ c−2δ
1 c

(
‖(ox,y ∧ u)‖
‖u‖

)−δ
≤ c−4δ

1 cdX(x, y)−δ.

In total, combining the two cases we arrive at the bound

I1 ≤ c−4δ
1 cvM (x, y) + θ−δ.

We now bound I2. Notice that R(g) = R(g−1) and by (6.1), for all x, y ∈ X and g ∈ G
one has dX(gx, gy) ≤ R(g) dX(x, y). It follows that dX(gx, gy)−δ ≤ R(g)δ dX(x, y)−δ.
Therefore by (6.12) we have that

I2 =

∫
G>T

vM (gx, gy)dµM,(x,y) (g)

≤ vM (x, y)

∫
G>T

R(g)δdµM,(x,y) (g)

≤ vM (x, y)T−δ
∫
G>T

R(g)2δdµM,(x,y) (g) ≤ T−δJvM (x, y).

Combining the estimates for I1 and I2 we conclude that for all (x, y) ∈ (X ×X)M one has

AM,µ vM (x, y) ≤ (c−4δ
1 c+ T−δJ)vM (x, y) + θ−δ.

If we choose c1 close enough to 1 and T large enough then the constant c′ := c−4δ
1 c+ T−δJ

is strictly less than 1, which completes the proof. Note that θ depends on T and c1 (which
determine U) but that does not matter. �

Finally we conclude the proof of Theorem 2.1(b).

Proof of Theorem 2.1(b). Notice that since π∗ν = ν̄Gr2(R3) is the Furstenberg measure of

µ on Gr2(R3) which is non-atomic (see Remark 1.4), ν is non-atomic as well. By Propo-
sition 6.9 we may apply the criterion for the non-atomicity of the limit measures given in
Proposition 6.4 which concludes the proof. �
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Appendix A. Diophantine approximation and the geometry of numbers

In the past decades Furstenberg has been promoting an approach to attack a famous open
problem in Diophantine approximation: Are cubic numbers well approximable? Recall that
a number α ∈ R is well approximable if the coefficients ai in its continued fraction expansion
α = [a0; a1, a2, . . .] form an unbounded sequence of integers. Lagrange’s theorem asserts that
α is a quadratic irrational number if and only if its continued fraction expansion is eventually
periodic and hence clearly not well approximable. This could be proved by translating the
problem into a dynamical problem about the action of the diagonal group at = diag

(
et, e−t

)
acting on the space of lattices in the plane PGL2(R)/PGL2(Z). Furstenberg’s approach says
that the dynamical system at y PGL2(R)/PGL2(Z) which is tailored to detect quadratics,
should be replaced with a dynamical system which is tailored to detect cubic irrationals. He
then suggests the following characterisation of well approximability in terms of the dynamics
on the space of 2-lattices X discussed in this paper.

Theorem A.1 (Furstenberg - unpublished). Let A denote the group of diagonal matrices
in G and let x = [Λ] ∈ X be the homothety class of the 2-lattice Λ = spanZ{v, w} spanned
by v, w ∈ R3 r {0}. Assume that Λ ∩ p = {0} for p = spanR{ei, ej} any one of the three
planes fixed by A. Then the orbit Ax is unbounded in X if and only if one of the ratios
vi/wi is well approximable, for i = 1, 2, 3.

Before we proceed to show that the dynamical system Ay X can detect cubic numbers
in a certain sense, we introduce a notion in geometry of numbers that will be important for
our discussion. Consider a lattice L ⊂ R3 and an L-rational line W (where W is L-rational
if L ∩W 6= {0}). We define the directional 2-lattice

LW := πW (L)

where πW denotes the orthogonal projection onto W⊥. The term comes from visualising
LW as representing what L looks like when one is looking in the direction of W . We set

D(L) = {[LW ] : W ∈ PR3 is L-rational} ⊂ X.
We now wish to describe subcollections of D(L) which are obtained by conditioning on W .
Note that an L-rational line W ∈ PR3 is characterised by the generator vW (well defined
up to sign) of L ∩W . Given a subset S ⊂ R3 we define the set of conditioned directional
lattices defined by L and S to be

DS(L) = {[LW ] : W ∈ PR3 is L-rational and vW ∈ S} ⊂ X.
Sometimes, instead of writing LW we write Lv, where v = vW .

Consider a lattice L ⊂ R3 which is obtained in the following manner. Let K be a totally
real number field of degree 3 over Q and for i = 1, 2, 3 let σi be its distinct embeddings into
the reals. Let ϕ : K→ R3 be the so-called geometric embedding given by ϕ(α) := (σi(α))3

1.
It is well known that if OK denotes the ring of integers in K then L := ϕ(OK) is a lattice in
R3. Let N : R3 → R denote the cubic form given by N(v) = v1v2v3, so that for α ∈ K one
has NK/Q(α) = N(ϕ(α)).

The lattice L has a very special relationship with the surface

S := {v ∈ R3 : N(v) = ±1}.
Namely,

S ∩ L = S ∩ Lprim = {ϕ(α) : α ∈ O×K}
4.

4Lprim denotes the collection of primitive vectors in L.
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In particular, the group

AL := {diag (σ1(α), σ2(α), σ3(α)) : α ∈ O×K}, (A.1)

which has a finite index subgroup which is a lattice in A ' R2 by Dirichlet’s unit theorem,
acts transitively and simply on S∩L. This furnishes the link between Furstenberg’s criterion
for well approximability and cubic numbers.

Corollary A.2. Let K, L = ϕ(OK) and S = {v ∈ R3 : N(v) = ±1} be as above. Then
the collection of conditioned directional lattices DS(L) is unbounded in X if and only if for
some 1 ≤ i ≤ 3, σi(K) rQ is composed of well approximable numbers.

Proof. For v ∈ R3 we denote by πv : R3 → v⊥ the orthogonal projection with kernel Rv.
Let 1 = (1, 1, 1) ∈ L and denote Λ = π1(L). Since the group in (A.1) contains a finite
index subgroup which is cocompact in A, the unboundedness of A[Λ] is equivalent to the
unboundedness of AL[Λ]. But

AL[Λ] = {diag (σ1(α), σ2(α), σ3(α)) ([π1(L)]) : α ∈ O×K}

= {[πϕ(α)(L)] : α ∈ O×K} = {[πv(L)] : v ∈ L ∩ S} = DS(L),

where we have used the fact that for g ∈ G and v ∈ L, gπv(L) = πgv(g−tL) and the fact
that for a ∈ AL, we have that a−tL = L.

Let α, β ∈ OK be such that {1, α, β} forms a basis of OK over Q. Denote α′ = α− 1
3 Tr(α)

and similarly denote β′ = β − 1
3 Tr(β). It follows that Λ is spanned by ϕ(α′) and ϕ(β′).

Hence, by Furstenberg’s criterion (Theorem A.1) we deduce that DS(L) is unbounded if and
only if there exists 1 ≤ i ≤ 3 such that the ratio σi(α

′/β′) is well approximable. Now it is
not hard to see that for a given cubic real field F, since FrQ is a single GL2(Q)-orbit (under
the action by Möbius transformations), and since this action preserves well approximability,
then either all elements of FrQ are well approximable or non of them are. This concludes
the proof of the Corollary. �

Let

∆ := {p ∈ Gr2(R3) : p contains one of the axis Rei, i = 1, 2, 3}
be the projective triangle defined by the axis. Recasting in terms of conditioned directional
lattices the common belief that real cubic numbers should be well approximable and even
generic for the Gauss map we propose the following.

Conjecture A.3. Let L and S be as in Corollary A.2. Then the closure in X of DS(L)
contains π−1(∆).

In the introduction we stated Conjecture 1.1 which follows from the following conjecture.
We view it as an analogue to Conjecture A.3. We use the notation V 1

Q = {v : Q(v) = 1} for

Q(v) := 2v1v3 − v2
2 from the introduction and also C ⊂ Gr2(R3) for the circle of isotropic

subspaces defined before Theorem 1.10.

Conjecture A.4. The closure of DV 1
Q

(Z3) contains π−1(C).

References

[Abe08] H. Abels, Proximal linear maps, Pure Appl. Math. Q. 4 (2008), no. 1, Special Issue: In honor of
Grigory Margulis. Part 2, 127–145. MR2405998

[BFLM11] J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Stationary measures and equidistri-
bution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc. 24 (2011), no. 1,
231–280. MR2726604



46

[BHC62] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75
(1962), 485–535. MR0147566

[Bog07] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. MR2267655
(2008g:28002)

[BQ11] Y. Benoist and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogènes,
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