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Abstract. We define a natural topology on the collection of (equiva-
lence classes up to scaling of) locally finite measures on a homogeneous
space and prove that in this topology, pushforwards of certain infinite
volume orbits equidistribute in the ambient space. As an application of
our results we prove an asymptotic formula for the number of integral
points in a ball on some varieties as the radius goes to infinity.

1. Introduction

This paper deals with the study of the possible limits of periodic orbits in
homogeneous spaces. Before explaining what we mean by this we start by
motivating this study. In many instances arithmetic properties of an object
are captured by periodicity of a corresponding orbit in some dynamical
system. A simple instance of this phenomenon is that α ∈ R is rational if
and only if its decimal expansion is eventually periodic. In dynamical terms
this is expressed by the fact that the orbit of α modulo 1 on the torus R/Z
under multiplication by 10 (modulo 1) is eventually periodic. Furthermore,
from knowing distributional information regarding the periodic orbit one
can draw meaningful arithmetical conclusions. In the above example this
means that if the orbit is very close to being evenly distributed on the
circle then the frequency of appearance of say the digit 3 in the period of
the decimal expansion is roughly 1

10 . This naive scheme has far reaching
analogous manifestations capturing deep arithmetic concepts in dynamical
terms. More elaborate instances are for example the following:

• Similarly to the above example regarding decimal expansion, pe-
riodic geodesics on the modular surface correspond to continued
fraction expansions of quadratic numbers and distributional proper-
ties of the former implies statistical information regarding the latter
(see [AS] where this was used).
• Representing an integral quadratic form by another is related to

periodic orbits of orthogonal groups (see [EV08]).
• Class groups of number fields correspond to adelic torus orbits (see [ELMV11]).
• Values of rational quadratic forms are governed by the volume of

periodic orbits of orthogonal groups (see [EMV09, Theorem1.1])
1
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• Asymptotic formulas for counting integer and rational points on va-
rieties are encoded by distributional properties of periodic orbits
(see [DRS93,EM93,EMS96,GMO08] for example).

In all the above examples the orbits that are considered are of finite vol-
ume. Recently in [KK] and [OS14] this barrier was crossed and particular
instances of the above principle were used for infinite volume orbits in order
to obtain asymptotic estimates for counting integral points on some varieties
and weighted second moments of GL(2) automorphic L-functions.

At this point let us make more precise our terminology. Let X be a
locally compact second countable Hausdorff space and letH be a unimodular
topological group acting on X continuously. We say that an orbit Hx is
periodic if it supports an H-invariant locally finite Borel measure. In such a
case the orbit is necessarily closed and this measure is unique up to scaling
and is obtained by restricting the Haar measure of H to a fundamental
domain of StabH(x) in H which is identified with the orbit via h 7→ hx. We
say that such an orbit is of finite volume if the total mass of the orbit is
finite. It is then customary to normalize the total mass of the orbit to 1.
We remark that in some texts the term periodic orbit is reserved for finite
volume ones but we wish to extend the terminology as above. If Hx is a
periodic orbit we denote by µHx a choice of such a measure, which in the
finite volume case is assumed to be normalized to a probability measure.

Given a sequence of periodic orbits Hxi, it makes sense to ask if they
converge in some sense to a limiting object. When the orbits are of finite
volume the common definition is that of weak* convergence; each orbit is
represented by the probability measure µHxi and one equips the space of
probability measures P(X) with the weak* topology coming from identifying
P(X) as a subset of the unit sphere in the dual of the Banach space of
continuous functions on X vanishing at infinity C0(X). The starting point
of this paper is to challenge this and propose a slight modification which will
allow to bring into the picture periodic orbits of infinite volume. For that
we will shortly concern ourselves with topologizing the space of equivalence
classes [µ] of locally finite measures µ on X.

This approach has several advantages over the classical weak* convergence
approach. As said above it allows to discuss limiting distributions of infinite
volume orbits but also it allows to detect in some cases information which
is invisible for the weak* topology: In the classical discussion, it is common
that a sequence of periodic probability measures µHxi converges to the zero
measure (phenomenon known as full escape of mass). Nevertheless it some-
times happens that the orbits themselves do converge to a limiting object
but this information was lost because the measures along the sequence were
not scaled properly. This phenomenon happens for example in [Sha] which
inspired us to define the notion of convergence to be defined below.
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Although the results we will prove are rather specialized we wish to
present the framework in which our discussion takes place in some gen-
erality. Let G be a Lie group1 and let Γ < G be a lattice.

Question 1.1. Let X = G/Γ and let Hixi be a sequence of periodic orbits.
Under which conditions the following holds:

(1) The sequence [µHixi ] has a converging subsequence?
(2) The accumulation points of [µHixi ] are themselves (homothety classes

of) periodic measures?

2. Basic definitions and results

2.1. Topologies. Now we make our discussion in the introduction more
rigorous. Let X be a locally compact second countable Hausdorff space
and M(X) the space of locally finite measures on X. We say that two
locally finite measures µ and ν in M(X) are equivalent if there exists a
constant λ > 0 such that µ = λν. This forms an equivalence relation and
we denote the equivalence class of µ by [µ]. We denote by PM(X) the set
of all equivalence classes of nonzero locally finite measures on X.

We topologize M(X) and PM(X) as follows. Let Cc(X) be the space of
compactly supported continuous functions on X. For any ρ ∈ Cc(X), define
a map

iρ :M(X)→ C0(X)∗

by sending dµ ∈ M(X) to ρdµ ∈ C0(X)∗. Here C0(X) is the space of
continuous functions on X vanishing at infinity equipped with the supremum
norm, and C0(X)∗ denotes its dual space. The weak* topology on C0(X)∗

then induces a topology τρ onM(X) via the map iρ. We will denote by τX
the topology onM(X) generated by (M(X), τρ) (ρ ∈ Cc(X)). Equivalently,
τX is the smallest topology onM(X) such that for any f ∈ Cc(X) the map

µ 7→
∫
fdµ

is a continuous map from M(X) to R.

Definition 2.1. Let πP be the natural projection map from M(X) \ {0}
to PM(X). The topology τP on PM(X) is then defined to be the quotient
topology induced by τX on M(X) via πP . In other words, U is an open
subset in PM(X) if and only if π−1

P (U) is open inM(X) \ {0}. In this way,
we obtain a topological space (PM(X), τP ).

1One could (and should) develop this discussion in the S-arithmetic and adelic settings
as well.
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2.2. Main results. Now let G = SL(n,R), Γ = SL(n,Z) and X = G/Γ =
SL(n,R)/SL(n,Z). Denote by mX the unique G-invariant probability mea-
sure on X and by Ad the adjoint representation of G. We write

A = {diag(et1 , et2 , . . . , etn−1 , etn) : t1 + t2 + · · ·+ tn = 0}

for the connected component of the full diagonal group in G. In this pa-
per, we address Question 1.1 in the space X = SL(n,R)/ SL(n,Z) with
certain sequences {Hixi} and prove the convergence of [µHixi ] with respect
to (τP ,PM(X)) in the sense of Definition 2.1. As a simple exercise, and to
motivate such a statement, the reader can show that if [µHixi ] → [mX ] for
example, then the orbits Hixi become dense in X. In many cases our re-
sults imply that indeed the limit homothety class is the class of the uniform
measure mX .

Before stating our theorems, we need some notations. For a Lie subgroup
H < G, let H0 denote the connected component of identity of H, and Lie(H)
its Lie algebra. Denote by CG(H) (resp. CG(Lie(H))) the centralizer of H
(resp. Lie(H)) in G. For G, we write g = Lie(G) = sl(n,R) and

exp : sl(n,R)→ SL(n,R)

the exponential map from g to G. For any g ∈ G and measure µ on X,
define the measure g∗µ by

g∗µ(E) = µ(g−1E)

for any Borel subset E ⊂ X. An A-orbit Ax in X is called divergent if the
map a 7→ ax from A to X is proper.

Definition 2.2. Let {gk} be a sequence in G. For any subgroup S ⊂ A, we
define

A(S, gk) = {Y ∈ Lie(S) : {Ad(gk)Y } is bounded in g}.

This is a subalgebra in Lie(S).

Remark 2.3. By passing to a subsequence, we can always assume that for
any Y ∈ Lie(S) \ A(S, gk), the sequence Ad(gk)Y → ∞. Indeed, observe
that for two vectors v1 and v2 ∈ Lie(S), if {Ad(gk)v1} and {Ad(gk)v2} are
bounded, then for any v in the linear span of v1 and v2, {Ad(gk)v} is also
bounded. Because of this, one can collect vectors v with {Ad(gk)v} bounded
by passing to subsequences of {gk}, and due to the finite dimension of Lie(S),
this process would stop at some point. Then A(S, gk) is the set of the vectors
collected in this process, and for any vector Y which is not collected, the
sequence Ad(gk)Y →∞.

The following theorem answers Question 1.1 for sequences of translates
of a divergent diagonal orbit in G/Γ. Moreover, it gives a description of all
accumulation points.
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Theorem 2.4. Let Ax be a divergent orbit in X. Then for any {gk}k∈N in
G, the sequence [(gk)∗µAx] has a subsequence converging to an equivalence
class of a periodic measure on SL(n,R)/ SL(n,Z).

Furthermore, assume that for any Y ∈ Lie(A) \ A(A, gk) the sequence
{Ad(gk)Y } diverges (see Remark (2.3)). Then we have the following de-
scription of the limit points of [(gk)∗µAx]. The subgroup exp(A(A, gk)) is the
connected component of the center of the reductive group H = CG(A(A, gk)),
and any limit point of the sequence [(gk)∗µAx] is a translate of the equiva-
lence class [µH0x]. In particular, if the subspace A(A, gk) = {0}, then the
sequence [(gk)∗µAx] converges to the equivalence class of the Haar measure
on SL(n,R)/SL(n,Z).

We will also deduce the following theorem from Theorem 2.4, which an-
swers Question 1.1 for translates of an orbit of a connected reductive group
H containing A. Such a reductive group is known as the connected compo-
nent of CG(S) where S is a subtorus in A. We will see by Lemma 10.2 in
section 10 that for x ∈ SL(n,R)/ SL(n,Z) with Ax divergent, Hx is closed
for any reductive group H containing A.

Theorem 2.5. Let Ax be a divergent orbit in X and let H be a connected
reductive group containing A. Then for any {gk}k∈N in G, the sequence
[(gk)∗µHx] has a subsequence converging to an equivalence class of a periodic
measure on SL(n,R)/SL(n,Z).

Furthermore, let S be the center of H and assume that for any Y ∈
Lie(S)\A(S, gk) the sequence {Ad(gk)Y } diverges. Then we have the follow-
ing description of the limit points of [(gk)∗µHx]. The subgroup exp(A(S, gk))
is the connected component of the center of the reductive group CG(A(S, gk))
and any limit point of the sequence [(gk)∗µHx] is a translate of the equiv-
alence class [µCG(A(S,gk))0x]. In particular, if the subspace A(S, gk) = {0},
then the sequence [(gk)∗µHx] converges to the equivalence class of the Haar
measure on SL(n,R)/SL(n,Z).

Remark 2.6. The proof of Theorem 2.4 also gives a criterion on the con-
vergence of [(gk)∗µAx]. Similar criterion on the convergence of [(gk)∗µHx]
for a connected reductive group H containing A could be obtained from the
proof of Theorem 2.5.

We give several examples to illustrate Theorem 2.4 and Theorem 2.5.

(1) Let G = SL(3,R) and Γ = SL(3,Z). Pick the initial point x = Zn ∈

X and the sequence gk =

(
1 k k2/2
0 1 k
0 0 1

)
. In this case one can show

that the subalgebra A(A, gk) = {0} and CG(A(A, gk)) = SL(3,R).
Theorem 2.4 then says that [(gk)∗µAx] converges to [µSL(3,R)x] =
[mX ], i.e. the class of the uniform measure mX .
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(2) Fix G,Γ, x and gk as in example (1). Let H be the connected com-
ponent of the reductive subgroup ∗ ∗ 0

∗ ∗ 0
0 0 ∗

 ∩ SL(3,R)

in SL(3,R). Then the center S of H is equal to
{(

a 0 0
0 a 0
0 0 a−2

)
: a 6= 0

}
,

and it is easy to see that the subalgebraA(S, gk) = {0} and CG(A(S, gk)) =
SL(3,R). Then Theorem 2.5 implies that the sequence [(gk)∗µHx]
converges to [µSL(3,R)x] = [mX ].

(3) Let G = SL(4,R) and Γ = SL(4,Z). Pick the initial point x = Zn ∈

X and the sequence gk =

(
1 k 0 0
0 1 0 0
0 0 1 k
0 0 0 1

)
. In this case one can show that

the subalgebra

A(A, gk) =




t 0 0 0
0 t 0 0
0 0 −t 0
0 0 0 −t

 : t ∈ R


and

CG(A(A, gk)) =


∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 ∩ SL(4,R).

Theorem 2.4 then says that any limit point of the sequence [(gk)∗µAx]
is a translate [µCG(A(A,gk))0x]. In fact, we will see in the proof of
Theorem 2.4 that in this particular example, the sequence [(gk)∗µAx]
actually converges to [µCG(A(A,gk))0x].

(4) Fix G,Γ and x as in example (3), and pick the sequence gk =(
1 k k2/2 0
0 1 k 0
0 0 1 0
0 0 0 1

)
. Let H be the connected component of the reductive

subgroup 
∗ ∗ 0 0
∗ ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 ∩ SL(4,R)

in SL(4,R). Then the center S ofH is equal to

{(
a 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

)
: a2bc = 1

}
,

and it is easy to see that the subalgebra

A(S, gk) = A(S, gk) =




s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 −3s

 : s ∈ R
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and

CG(A(S, gk)) =


∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗

 ∩ SL(4,R)

in SL(4,R). In this case, Theorem 2.5 tells that any limit point of
the sequence [(gk)∗µHx] is a translate [µCG(A(S,gk))0x], and the proof
of Theorem 2.5 would imply that [(gk)∗µHx] actually converges to
[µCG(A(S,gk))0x] for this sequence {gk}.

By comparing example (1) and (3) (resp. (2) and (4)), one can see that
the subalgebra A(A, gk) (resp. A(S, gk)) plays an important role in indi-
cating what kinds of limit points the sequence [(gk)∗µAx] (resp. [(gk)∗µHx])
could converge to. In example (1), we have A(A, gk) = {0}. By push-
ing the orbit Ax with gk, the sequence {gkAx} starts snaking in the space
SL(3,R)/ SL(3,Z), and eventually fills up the entire space. In example (3),
A(A, gk) is a 1-dimensional subalgebra in Lie(A) which commutes with gk,
and it corresponds to the part of the orbit Ax which stays still and is not
affected when we push µAx by gk. This would result in the limit orbit having
this part as the ’central direction’, and the ’orthogonal’ part in Ax would be

pushed by gk and fill up the sub-homogeneous space

(
SL(2,R) 0

0 SL(2,R)

)
x

in SL(4,R)/ SL(4,Z).
From the characterization of convergence given in Proposition 3.3, Theo-

rem 2.4 and Theorem 2.5 can be restated in the form of the following

Theorem 2.7. Let Ax be a divergent orbit and {gk} be any sequence in G
with [(gk)∗µAx] converging to an equivalence class of locally finite algebraic
measures [ν] as in Theorem 2.4. Then there exists a sequence λk > 0 such
that

λk(gk)∗µAx → ν

with respect to the topology τX . In particular, for any F1, F2 ∈ Cc(SL(n,R)/ SL(n,Z))
we have ∫

F2d(gk)∗µAx∫
F1d(gk)∗µAx

→
∫
F2dν∫
F1dν

whenever
∫
F1dν 6= 0. The same results hold if A is replaced by any con-

nected reductive group H containing A.

Remark 2.8. From the proof of Theorem 2.4, we will see directly that in the
case A(A, gk) = {0}, the numbers λk’s in Theorem 2.7 are actually related
to volumes of convex polytopes of a special type in Lie(A) (see Definition 4.1
and Corollary 10.1). We remark here that in view of Theorem 2.7, the λk’s in
this case can also be calculated by a function F1 ∈ Cc(SL(n,R)/ SL(n,Z))
with its support being a large compact subset. This makes Theorem 2.7
practical in other problems.
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2.3. Applications. As an application of our results, we give one example
of a counting problem. More details about such counting problem could be
found in [DRS93], [EM93], [EMS96] and [Sha00].

Let M(n,R) be the space of n× n matrices with the norm

‖M‖2 = Tr(M tM) =
∑

1≤i,j≤n
x2
ij

for M = (xij)1≤i,j≤n ∈ M(n,R). Denote by BT the ball of radius T cen-
tered at 0 in M(n,R). Fix a monic polynomial p0(λ) in Z[λ] which splits
completely over Q. By Gauss Lemma, the roots αi of p(λ) are integers. We
assume that the αi’s are distinct and nonzero. Let

Mα = diag(α1, α2, . . . , αn) ∈M(n,Z).

For M ∈M(n,R), denote by pM (λ) the characteristic polynomial of M . We
define

V (R) := {M ∈M(n,R) : pM (λ) = p0(λ)}
the variety of matrices M with characteristic polynomial pM (λ) equal to
p0(λ), and

V (Z) = {M ∈M(n,Z) : pM (λ) = p0(λ)}
the integer points in the variety V (R).

There is a natural volume form on the variety V (R) inherited from G =
SL(n,R). Specifically, the orbit map

G→ V (R)

defined by g 7→ Ad(g)Mα gives an isomorphism between the quotient space
G/A and the variety V (R), and the volume form is defined to be the G-
invariant measure on G/A. The existence of such a measure is well-known,
and the proof of it could be found, for example, in [Rag72]. With this volume
form, one can compute (see Proposition 11.7) that for any T , the volume of
V (R) ∩BT

Vol(V (R) ∩BT ) =
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2.

The following theorem concerns the asymptotic formula for the number of
integer points in V (Z) ∩ BT . We will see that the set V (Z) ∩ BT behaves
differently from V (R) ∩BT , with an extra natural log term.

By a well-known theorem of Borel and Harish-Chandra [BHC62], the
subset V (Z) is a finite disjoint union of Ad(Γ)-orbits where Γ = SL(n,Z).
One can write this disjoint union as

V (Z) =

h0⋃
i=1

Ad(Γ)Mi

for some h0 ∈ N and Mi ∈ V (Z) (1 ≤ i ≤ h0). Note that for each Mi,
the stabilizer ΓMi of Mi is finite. Also the number of the orbits h0 is equal
to the number of equivalence classes of nonsingular ideals in the subring
in M(n,R) generated by Mα, for which readers may refer to [BHC62] and
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[LM33]. In the following theorem, to ease the notation, we write t for a
vector (t1, t2, . . . , tn) ∈ Rn.

Theorem 2.9. We have

|V (Z) ∩BT | ∼

(
h0∑
i=1

1

|ΓMi |

)
c0 Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2(lnT )n−1

where Vol(B1) is the volume of the ball of radius one in Rn(n−1)/2 and c0 is
the volume of the (n− 1)-convex polytopet ∈ Rn :

n∑
i=1

ti = 0,
l∑

j=1

tij ≥
l∑

j=1

(j − ij),∀1 ≤ l ≤ n, ∀i1 < · · · < il


with respect to the natural measure induced by the Lebesgue measure on Rn.

In the sequel, we will mainly focus on Theorem 2.4 as all the other the-
orems will be corollaries of it. In the course of the proof of Theorem 2.4,
the case A(A, gk) = {0} plays an important role, and other cases could be
proved by induction. Therefore, most of our arguments in this paper would
work for the case A(A, gk) = {0}. We remark here that our proof is inspired
by [OS14], where Hee Oh and Nimish Shah deal with the case G = SL(2,R)
by applying exponential mixing and obtain an error estimate. This effective
result is improved recently in [KK] by Dubi Kelmer and Alex Kontorovich.

When we showed an earlier draft of the manuscript to Nimish Shah, he
pointed out to us that similar results to those appearing in this paper were
established by him at the beginning of this century, but were never pub-
lished.

The paper is organized as follows:

• We start our work in section 3 by studying the topology τP on
PM(X) for a locally compact second countable Hausdorff space X.
In particular, a characterization of convergence in PM(X) is given,
and Theorem 2.7 is obtained as a natural corollary, if Theorem 2.4
and Theorem 2.5 are presumed.
• In section 4, a special type of convex polytopes in Lie(A) is intro-

duced. Such a convex polytope is related to non-divergence of an
orbit gkAx. To analyze these convex polytopes, we define graphs
associated to them and prove some auxiliary results concerning the
graphs in section 5. With the assumption A(A, gk) = {0}, these aux-
iliary results imply some properties of the convex polytopes, which
we prove in section 6.
• Keeping the assumption A(A, gk) = {0} in section 7, we prove a

statement on the non-divergence of the sequence of [(gk)∗µAx] and
show that [(gk)∗µAx] converges to [ν] for some probability measure
ν invariant under a unipotent subgroup. Then we translate section
7 in terms of adjoint representation in section 8. The linearization
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technique and the measure classification theorem for unipotent ac-
tions on homogeneous spaces are discussed in section 9, which enable
us to study the measure rigidity in our setting.
• We complete the proofs of Theorem 2.4 and Theorem 2.5 in section

10. The proof of Theorem 2.9 is given in section 11.
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3. Topology on PM(X)

In this section, we study the topology τP on PM(X) for any locally
compact second countable Hausdorff space X. We will give a description of
the convergence of a sequence [µk] in PM(X) (Proposition 3.3). This will
help us study the convergence of the sequence [(gk)∗µAx] in Theorem 2.4
(resp. [(gk)∗µHx] in Theorem 2.5).

Before proving Proposition 3.3, we need some preparations.

Proposition 3.1. The topology (τP ,PM(X)) is Hausdorff. In particular,
any convergent sequence in PM(X) has a unique limit.

Proof. Let [µ] and [ν] be two distinct elements in PM(X). We choose f ∈
Cc(X) and representatives µ and ν such that∫

fdµ =

∫
fdν = 1.

Since [µ] 6= [ν], there exists a nonnegative function g ∈ Cc(X) such that∫
gdµ∫
gdν

6= 1.

We define neighborhoods of µ and ν in M(X) by

V (µ; f, g, ε) =

{
λ :

∣∣∣∣∫ gdλ−
∫
gdµ

∣∣∣∣ < ε,

∣∣∣∣∫ fdλ−
∫
fdµ

∣∣∣∣ < ε

}
V (ν; f, g, ε) =

{
λ :

∣∣∣∣∫ gdλ−
∫
gdν

∣∣∣∣ < ε,

∣∣∣∣∫ fdλ−
∫
fdν

∣∣∣∣ < ε

}
.

Since πP :M(X)→ PM(X) is an open map, πP (V (µ; f, g, ε)) and πP (V (ν; f, g, ε))
are open neighborhoods of [µ] and [ν] in PM(X). We prove that for suffi-
ciently small ε > 0

πP (V (µ; f, g, ε)) ∩ πP (V (ν; f, g, ε)) = ∅.
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Suppose, on the contrary, that [λ] ∈ πP (V (µ; f, g, ε)) ∩ πP (V (ν; f, g, ε)).
Then there exist constants α, β > 0 such that∣∣∣∣α ∫ gdλ−

∫
gdµ

∣∣∣∣ < ε,

∣∣∣∣α ∫ fdλ−
∫
fdµ

∣∣∣∣ < ε∣∣∣∣β ∫ gdλ−
∫
gdν

∣∣∣∣ < ε,

∣∣∣∣β ∫ fdλ−
∫
fdν

∣∣∣∣ < ε.

This implies that ∫
gdµ− ε∫
gdν + ε

<
α

β
<

∫
gdµ+ ε∫
gdν − ε∫

fdµ− ε∫
fdν + ε

<
α

β
<

∫
fdµ+ ε∫
fdν − ε

and we get a contradiction for sufficiently small ε > 0. �

Proposition 3.2. A sequence [µk] ∈ PM(X) converges to [ν] if and only
if for each k ∈ N there exists a representative µ′k in [µk] and for [ν] a
representative ν ′ ∈ [ν] such that µ′k converges to ν ′ in M(X).

Proof. Suppose that [µk] → [ν]. We choose f ∈ Cc(X) and representatives
µ′k and ν ′ such that ∫

fdµ′k =

∫
fdν ′ = 1.

Suppose that µ′k 6→ ν ′ in M(X). Then there exists g ∈ Cc(X) such that
after passing to a subsequence∣∣∣∣∫ gdµ′k −

∫
gdν ′

∣∣∣∣ ≥ δ
for some δ > 0. Here one may assume

∫
gdν ′ 6= 0. Then by the same

arguments as in Proposition 3.1, we can find a neighborhood πP (V (ν; f, g, ε))
of [ν] in PM(X) such that

[µk] /∈ πP (V (ν; f, g, ε))

which contradicts the condition [µk]→ [ν]. The other direction follows from
Definition 2.1. �

Now we are in the position to prove the following proposition, which
provides a characterization of the convergence of a sequence [µk] in PM(X).
This will help us study the convergence of equivalence classes of locally finite
measures on SL(n,R)/ SL(n,Z) in the rest of the paper.

Proposition 3.3. (1) Let µk be a sequence in M(X). Then [µk] con-
verges to [ν] in PM(X) if and only if there exists a sequence {λk} of
positive numbers such that λkµk converges to ν in M(X). If there
exists another sequence {λ′k} with λ′kµk → ν ′ 6= 0 in M(X), then

[ν ′] = [ν]

and limk λ
′
k/λk exists.
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(2) The sequence [µk] converges to [ν] if and only if for any f, g ∈ Cc(X)
with

∫
gdν 6= 0, we have

∫
gdµk 6= 0 for sufficiently large k and∫

fdµk∫
gdµk

→
∫
fdν∫
gdν

.

Proof. The first statement follows from Proposition 3.1 and Proposition 3.2.
For limk λ

′
k/λk, we choose f ∈ Cc(X) with

∫
fdν 6= 0, and we have

λ′k
λk

=
λ′k
∫
fdµk

λk
∫
fdµk

→
∫
fdν ′∫
fdν

.

For the second statement, if [µk] → [ν], then there exists a sequence
λk > 0 such that λkµk → ν 6= 0. For any f, g ∈ Cc(X) with

∫
gdν 6= 0 we

have

λk

∫
gdµk 6= 0

for sufficiently large k and∫
fdµk∫
gdµk

=

∫
fd(λkµk)∫
gd(λkµk)

→
∫
fdν∫
gdν

.

Conversely, let g ∈ Cc(X) with
∫
gdν 6= 0 and

λk =

∫
gdν∫
gdµk

.

Then we have λkµk → ν and [µk]→ [ν]. �

Remark 3.4. This shows that Theorem 2.7 is equivalent to Theorem 2.4
and Theorem 2.5.

From the discussions in this section, we know that to prove Theorem 2.4,
one needs to find a sequence of λk > 0 such that λk(gk)∗µAx converges to a
locally finite measure ν, and then prove that ν is a periodic measure. From
section 4 to section 6, we will construct the sequence λk in an explicit way.

4. Convex polytopes

Let {e1, e2, . . . , en} be the standard basis of Rn. We write K = SO(n,R)
the maximal compact subgroup in G, the connected component of the full
diagonal subgroup

A =
{

diag(et1 , et2 , . . . , etn−1 , etn) : t1 + t2 + · · ·+ tn = 0
}

and the upper triangular unipotent subgroup

N = {(uij) : uii = 1, uij = 0(i > j)} .
In this section, we will construct a special type of convex polytopes in Lie(A).
These convex polytopes will play an important role in our proof.

By Theorem 1.4 in [TW03], Ax is divergent if and only if x ∈ A·SL(n,Q)Γ.
Note that for any q ∈ SL(n,Q) the lattice qΓq−1 is commensurable with
Γ, and all results in this paper would hold if Γ is replaced by qΓq−1.
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Therefore, without loss of generality, we may assume that the initial point
x = eSL(n,Z).

To ease the notations, we will write t for a vector (t1, t2, . . . , tn) in a
n-dimensional space, and [n] will denote the index set {1, 2, . . . , n}. We
write In for the collection of all multi-index subsets of [n], and I ln for the
collection of the index subsets of cardinality l in In. For Rn with the basis
{e1, e2, . . . , en}, and for any index subset I = {i1 < i2 · · · < il} of [n], we
denote by

eI := ei1 ∧ · · · ∧ eil
the wedge product of the vectors in {e1, . . . , en} indexed by I. We will use
ωI(t) (t = (t1, t2, . . . , tn) ∈ Rn) for the linear functional

∑
i∈I ti on Rn.

Let g ∈ SL(n,R) and δ > 0. We define a region Ωg,δ in Lie(A) as follows.
Let t = (t1, t2, . . . , tn) ∈ Lie(A). For each ei ∈ Rn, the vector

g exp(t)ei = etigei /∈ Bδ
if and only if

ti ≥ ln δ − ln ‖gei‖.
Here we denote by Bδ the ball of radius δ > 0 around 0 in Rn with the
standard Euclidean norm ‖ · ‖. We also consider the wedge product eI for
any nonempty subset I ∈ In and

g exp(t)eI = eωI(t)geI /∈ Bδ
if and only if

ωI(t) ≥ ln δ − ln ‖geI‖.
This leads to the following

Definition 4.1. For any g ∈ SL(n,R) and δ > 0, we define in Lie(A)

Ωg,δ = {t ∈ Lie(A) : ωI(t) ≥ ln δ − ln ‖geI‖ for any nonempty I ∈ In} .

Remark 4.2. By the construction above, for any t ∈ Lie(A) \ Ωg,δ, the
lattice g exp(t)Zn has a short nonzero vector with the length depending on
δ > 0, and hence by Mahler’s compactness criterion, the point g exp(t)Γ ∈
gAΓ is close to infinity. By this reason, we will mainly study gAΓ inside
Ωg,δ.

Lemma 4.3. The region Ωg,δ is a bounded convex polytope in Lie(A) for
any δ > 0.

Proof. Since the region Ωg,δ is defined by various linear functionals on Lie(A),
Ωg,δ is a convex polygon. Now by definition, Ωg,δ is contained in the follow-
ing region {

t ∈ Rn :

n∑
i=1

ti = 0, ti ≥ ln δ − ln ‖gei‖,∀i ∈ [n]

}
which is bounded. The boundedness of Ωg,δ then follows. �



14 URI SHAPIRA AND CHENG ZHENG

In section 6, we will closely study the convex polytope Ωg,δ. We list here
some properties of convex polytopes which will be used later. The following
lemma is well known. We learnt it from Roy Meshulam.

Lemma 4.4. Let Ω be a convex subset in Rd. Suppose that Ω contains a
ball of radius r > 0. Then we have

Vol(∂Ω)

Vol(Ω)
≤ d

r
.

Proof. Let Br(0) denote the ball of radius r centered at 0 in Rd and we may
assume, without loss of generality, that Br(0) ⊂ Ω. We have

Vol(∂Ω) = lim
ε→0

Vol(Ω + εB1(0))−Vol(Ω)

ε

= lim
ε→0

Vol(Ω + (ε/r)Br(0))−Vol(Ω)

ε

≤ lim
ε→0

Vol(Ω + (ε/r)Ω)−Vol(Ω)

ε

= lim
ε→0

(1 + (ε/r))d − 1

ε
Vol(Ω)

=
d

r
Vol(Ω).

�

Lemma 4.5. Let R ⊂ Ω be two bounded d-dimensional convex polytopes in
Rd. Suppose that Ω contains a ball of radius r > 0 and

Vol(R)

Vol(Ω)
≥ c

for some constant c > 0. Then R contains a ball of radius rc/d.

Proof. Let ρ be the largest number such that R contains a ball of radius ρ.
It suffices to show that ρ ≥ rc/d. First, we claim

Vol(R) ≤ ρVol(∂R).

Proof of the claim. Let {fi} be the collection of the facets of R, and denote
by Pi the hyperplane determined by fi. For each fi, let Bi be the unique
cylinder with the following properties:

(1) the base of Bi is fi, and the height of Bi is equal to ρ.
(2) Bi and R lie in the same half-space determined by Pi.

The maximality of ρ then implies

R ⊂
⋃
i

Bi;
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otherwise, one would find a point x ∈ R such that for each fi, the distance
between x and fi is strictly larger than ρ. Now we have

Vol(R) ≤
∑
i

Vol(Bi) = ρ
∑

Vol(fi) = ρVol(∂R)

and the claim follows. �

Now we can finish the proof of the lemma. By Lemma 4.4 and the claim
above, we have

ρ ≥ Vol(R)

Vol(∂R)
≥ cVol(Ω)

Vol(∂Ω)
≥ cr

d
.

Here we use the fact that Vol(∂R) ≤ Vol(∂Ω) for any two convex polytopes
R ⊂ Ω. �

By Iwasawa decomposition, for each element g ∈ SL(n,R) we can write

g = kua

where k ∈ K = SO(n,R), u ∈ N and a ∈ A. Note that µA is A-invariant,
and we have

g∗µA = (ku)∗µA.

Because of this and since we will consider all the possible limits of {(gk)∗µA}
for gk ∈ G, it is harmless to assume that all gk belong to the upper triangular
unipotent group N . In other words, we have

gk = (uij(k))1≤i,j≤n

where uij(k) = 0 (i > j) and uii(k) = 1. Moreover, using Gauss elimination
and by the same reason, we can assume, after passing to a subsequence, the
following dichotomy for each entry uij(k) (i 6= j) as k →∞:

either uij(k)→∞ or uij(k) = 0.

Unless something else is specified, we will work under these assumptions on
{gk} in the rest of the paper.

5. Auxiliary results in graph theory

In this section, we will study a special class of graphs and prove some
properties of these graphs (Proposition 5.5 and Lemma 5.8), which will be
crucial to our study in convex polytopes in section 6. We continue the
assumptions on {gk} at the end of section 4, and work in the homogeneous
space X = SL(n,R)/ SL(n,Z).

In order to prove Proposition 5.5, we will need some lemmas involving
complex calculations which will guarantee the validity of the arguments in
the proof of Proposition 5.5. Here we introduce the following notation. For
any g ∈ SL(n,R) and any 1 ≤ l ≤ n, we will denote by (g)l×l the l × l
submatrix in the upper left corner of g. Note that if g, h ∈ SL(n,R) are
upper triangular, then (gh)l×l = (g)l×l(h)l×l.
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Lemma 5.1. For any a ∈ A and any 1 ≤ l ≤ n, we have either (gk)l×l =
(a−1gka)l×l for all sufficiently large k or (gk)l×l 6= (a−1gka)l×l for all suffi-
ciently large k

Proof. Write a = (a1, a2, . . . , an) ∈ A and gk = (uij(k))n×n. By definition,
we have

(gk)l×l = (uij(k))1≤i,j≤l

and

(a−1gka)l×l = (a−1
i ajuij(k))1≤i,j≤l.

The equation (gk)l×l = (a−1gka)l×l then yields

either uij(k) = 0 or ai = aj , ∀1 ≤ i, j ≤ l.
Now the lemma follows from our dichotomy assumption on the entries of
gk. �

Lemma 5.2. Let a ∈ A. Suppose the sequence {gkag−1
k : k ∈ N} is bounded

in SL(n,R). Then for sufficiently large k, gk commutes with a.

Proof. Suppose not. Then by Lemma 5.1 with l = n, for sufficiently large
k, we have

gk 6= a−1gka.

In this case, we would like to find a contradiction.
Let l0 be the minimum of the integers 0 ≤ l ≤ n− 1 with the property

(gk)(l+1)×(l+1) 6= (a−1gka)(l+1)×(l+1)

for sufficiently large k. Again the existence of such l0 is guaranteed by
Lemma 5.1. In other words, l0 is the maximum of 0 ≤ l ≤ n − 1 such that
(gk)l×l commutes with (a)l×l for sufficiently large k.

We write a = diag(a1, a2, . . . , an) ∈ A. Then for any 1 ≤ l ≤ n
(a)l×l = diag(a1, a2, . . . , al).

We also write gk as

gk =


(gk)l0×l0 vk . . .

0 1 . . .
...

...
...

0 0 . . .

 ∈ SL(n,R)

where vk is the l0-dimensional column vector next to (gk)l0×l0 in gk. Note
that according to this expression, (gk)(l0+1)×(l0+1) could be written as

(gk)(l0+1)×(l0+1) =

(
(gk)l0×l0 vk

0 1

)
.

Since (gk)l0×l0 commutes with (a)l0×l0 , one can compute

(a−1gka)(l0+1)×(l0+1)

=(a−1)(l0+1)×(l0+1)(gk)(l0+1)×(l0+1)(a)(l0+1)×(l0+1)
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=

(
(gk)l0×l0 al0+1(a−1)l0×l0vk

0 1

)
=

(
(gk)l0×l0 wk

0 1

)
where

wk := al0+1(a−1)l0×l0vk.

As (gk)(l0+1)×(l0+1) does not commute with (a)(l0+1)×(l0+1) for sufficiently
large k, we have

vk 6= wk

for sufficiently large k. From this and our dichotomy assumption on the
entries of gk, one can then easily deduce that vk 6= 0, vk →∞ and

wk − vk =
(
al0+1(a−1)l0×l0 − Il0

)
vk →∞

as k →∞. Here Il0 is the l0 × l0 identity matrix.
Now one can easily compute

a−1gkag
−1
k = (a−1gka)g−1

k

=


(gk)l0×l0 wk . . .

0 1 . . .
...

...
...

0 0 . . .




(gk)l0×l0 vk . . .
0 1 . . .
...

...
...

0 0 . . .


−1

=


Il0 wk − vk . . .
0 1 . . .
...

...
...

0 0 . . .

 .

Since wk−vk →∞ as k →∞, the formula above implies that {a−1gkag
−1
k }

diverges, which contradicts the boundedness of gkag
−1
k . This completes the

proof of the lemma. �

The following is an immediate corollary of Lemma 5.1 and Lemma 5.2.

Corollary 5.3. Let S ⊂ A be a subgroup in A. Then for any t ∈ Lie(S),
either Ad(gk)t → ∞ as k → ∞ or Ad(gk)t = t for sufficiently large k. In
particular, if the subalgebra A(S, gk) of Lie(A) is not trivial, then there exists
an element t ∈ Lie(S) such that each gk commutes with t for sufficiently
large k.

Proof. Apply Lemma 5.1 and Lemma 5.2 with a = exp(t). �

Definition 5.4. We define a graph from {gk} as follows. The vertex set V
is the index set [n] = {1, 2, . . . , n}, and two vertices i 6= j are connected by
an edge e ∈ E, which we denote by i ∼ j, if uij(k)→∞ as k →∞. In this
way, we obtain a graph G(gk) = (V,E) associated to {gk}.

Now we can prove our first result in this section.
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Proposition 5.5. The subalgebra A(A, gk) of Lie(A) (as defined in Def-
inition 2.2) is trivial if and only if the graph G(gk) associated to {gk} is
connected.

Proof. Suppose that the graph G(gk) associated to gk is not connected. Let
Gi = (Vi, Ei) (1 ≤ i ≤ m) be the connected components of G(gk). We pick
xi ∈ R \ {0} such that

∑m
i=1 |Vi|xi = 0. For any vertex j ∈ Vi, we assign

tj = xi. In this way we obtain an element t = (tj) ∈ Lie(A)\{0}. Note that
t is invertible. We show that

gkt = tgk.

Indeed, since t is invertible, we compute

tgkt
−1 = (tit

−1
j uij(k)).

For uij(k) 6= 0, by the definition of the graph G(gk), the vertices i and j are
in the same connected components. Hence we have ti = tj and

tgkt
−1 = (tit

−1
j uij(k)) = (uij(k)) = gk

as desired. This implies that Ad(gk) fixes t, and by definition t ∈ A(A, gk) 6=
{0}.

Now assume that the graph G(gk) is connected. Suppose that the subal-
gebra A(A, gk) is not trivial. Then there exists an element t ∈ LieA \ {0}
such that Ad(gk)t is bounded as k →∞.

Let a = exp t ∈ A \ {e}. Then {gkag−1
k } is bounded in SL(n,R). By

lemma 5.2, gk commutes with a. If we write a = diag(a1, a2, . . . , an), then
the equation gk = agka

−1 yields

(uij(k))1≤i,j≤n = (aia
−1
j uij(k))1≤i,j≤n

and hence ai = aj whenever uij(k) 6= 0. The connectedness of the graph G
then implies that all ai’s are equal and a = e, which contradicts a ∈ A\{e}.
This completes the proof of the proposition. �

Definition 5.6. Let G(V,E) be a graph consisting of the set of vertices V
and the set of edges E. Here we assume V = {v1, v2, . . . , vn} is an ordered
set with the ordering ≺, and we denote by vi ∼ vj if vi and vj are adjacent
by an edge in E. A subset S ⊂ V is called UDS (uniquely determined by
successors) if it satisfies the following property: for any vi ∈ V

vi ∈ S =⇒ vj ∈ S for all j ≺ i with vj ∼ vi (1)

For our purpose, we will consider UDS subsets of [n] in the graph G(gk)
associated to {gk}. The ordering of [n] inherits the natural ordering on N.
The following proposition will be needed in our computations later.

Proposition 5.7. For any 1 ≤ l ≤ n and any nonempty I ∈ I ln, the
sequence {gkeI} ⊂ ∧lRn is bounded if and only if I is UDS in the vertex set
[n] of G(gk). If this case happens, then we have gkeI = eI .
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Proof. Write I = {i1 < i2 < · · · < il}. Suppose that {gkeI} is bounded. We
show that I is UDS in [n]. If not, let i0 be the minimum in I = {i1, . . . , il}
such that the property (1) in Definition 5.6 does not hold for i0. Then
there is j0 < i0 with j0 ∼ i0 but j0 /∈ I. By the minimality of i0, for any
i ∈ I = {i1, i2, . . . , il} with j0 < i < i0, we have j0 6∼ i; otherwise j0 ∈ I.
This implies uj0,i(k) = 0 for all i ∈ {i1, i2, . . . , il} with i < i0. Note that
uj0,i0(k)→∞ as k → 0 by our assumption on the entries of gk.

Now we compute gkeI . In particular, by expanding gkeI in terms of the
standard basis {eJ : J ∈ I ln} in ∧lRn, we are interested in the coefficient in
the eJ0-coordinate, where J0 = {i ∈ I : i 6= i0} ∪ {j0}. As uj0,i(k) = 0 for
all i ∈ {i1, i2, . . . , il} with i < i0, one can easily compute

gkeI = uj0,i0(k)(∧i∈I,i<i0ei) ∧ ej0 ∧ (∧i∈I,i>i0ei) +
∑
J 6=J0

cJeJ

for some cJ ∈ R (J 6= J0). The divergence of uj0,i0(k) then contradicts the
boundedness of gkeI . This proves that I is UDS.

Conversely, suppose that I is a UDS subset in [n]. In this case, we will
show inductively that for any 1 ≤ j ≤ l

gk(ei1 ∧ ei2 ∧ · · · ∧ eij ) = ei1 ∧ ei2 ∧ · · · ∧ eij
and hence obtain that gkeI = gk(ei1 ∧ ei2 ∧ · · · ∧ eil) remains fixed. For
j = 1, since {i1, . . . , il} is UDS, this implies that ui,i1 = 0 for all i < i1 and
gkei1 = ei1 . Now assume that the formula holds for j. For j + 1, we know
that

gkeij+1 = eij+1 +
∑

i∈{i1,...,ij}

ui,ij+1ei

and hence

gk(ei1 ∧ ei2 ∧ · · · ∧ eij ∧ eij+1) = ei1 ∧ ei2 ∧ · · · ∧ eij ∧ (gkeij+1)

= ei1 ∧ ei2 ∧ · · · ∧ eij ∧ eij+1 .

This concludes the proof of the proposition. �

Finally, we will show our second result in this section, which will be crucial
in our study of convex polytopes.

Lemma 5.8. Let G(V,E) be a connected graph, where V = {v1, v2, . . . , vn}
is an ordered set with the ordering ≺. Then we can assign values x1, x2, . . . , xn
to the vertices v1, v2, . . . , vn such that

(1)
∑

vi∈V xi = 0
(2) For any proper UDS subset S ⊂ V ,

∑
vi∈S xi > 0.

Proof. We use induction on the number of vertices in G(V,E). There is
nothing to prove for n = 1. Now suppose we have n + 1 vertices. Assume
without loss of generality that v1 is the smallest according to the ordering
≺ on V . We remove the vertex v1 and all the edges adjacent to v1 from
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the graph G. This yields a new graph G′ which has m connected compo-
nents G′1 = (V ′1 , E

′
1), . . . , G′m = (V ′m, E

′
m) for some m ∈ N. Since |V ′j | ≤ n

(1 ≤ j ≤ m) and V ′j inherits the ordering from V , we can apply the induc-

tion hypothesis on each G′j = (V ′j , E
′
i). In particular, we obtain a vector

(x′2, . . . , x
′
n+1) ∈ Rn such that the value assignment

vi 7→ x′i, 2 ≤ i ≤ n+ 1

satisfies conditions (1) and (2) for each of the graphs G′j (1 ≤ j ≤ m).
Now we pick a sufficiently small positive number ε > 0 such that the new

value assignment xi = x′i − ε (2 ≤ i ≤ n+ 1) still satisfies condition (2) for
each G′j = (V ′j , E

′
j), and let x1 = nε. We show that this value assignment

vi 7→ xi, 1 ≤ i ≤ n+ 1

meets our requirements for G(V,E). The sum of xi is zero by induction
hypothesis. For a proper UDS subset S ⊂ V , if v1 /∈ S, then

S =

m⋃
j=1

S′j

where S′j is a subset in G′j = (V ′j , E
′
j), and either S′j is a proper UDS subset

in G′j = (V ′j , E
′
j) or S′j = V ′j . Since v1 /∈ S, by the connectedness of G(V,E)

and the UDS property of S, there is some j with S′j 6= V ′j and hence by
taking ε sufficiently small,∑

vi∈S
xi =

m∑
j=1

∑
vi∈S′j

xi > 0.

If S = {v1}, then condition (2) holds automatically. If v1 ∈ S and S 6= {v1},
then

S \ {v1} =
m⋃
j=1

S′j

where S′j is a subset in G′j = (V ′j , E
′
j), and either S′j is a proper UDS subset

in G′j = (V ′j , E
′
j) or S′j = V ′j . Since S is proper in V , there is some j with

S′j 6= V ′j and hence we have∑
vi∈S

xi =
m∑
j=1

∑
vi∈S′j

xi + x1 > (−nε) + nε = 0.

This completes the proof of the lemma. �

6. Revisit convex polytopes

In this section, we will study the convex polytopes Ωgk,δ where {gk} is
a sequence in SL(n,R) satisfying the assumptions at the end of section 4.
Our aim in this section is Proposition 6.3, which shows a crucial property
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of Ωgk,δ. This property will play an important role in various places of this
paper.

In the proof of Theorem 2.4, the case of A(A, gk) = {0} plays a central
role, and other cases can be deduced from this case. We remark here that
A(A, gk) = {0} if and only if the limit points of {Ad(gk) Lie(A)} in the
Grassmanian manifold of sl(n,R) are all nilpotent subalgebras. So start-
ing from this section to section 9, we will make additional assumptions
on {gk}, namely, that A(A, gk) = {0}, and by passing to a subsequence,
Ad(gk) Lie(A) converges to a subalgebra consisting of nilpotent elements in
the Grassmanian manifold of sl(n,R). We will write limk→∞Ad(gk) Lie(A)
for the limit nilpotent subalgebra and limk→∞Ad(gk)A for the correspond-
ing limit unipotent subgroup.

Following Definition 5.4, we write G(gk) = (V,E) for the graph associated
to {gk}.

Lemma 6.1. For any 0 < δ < 1, the region

{t ∈ Lie(A) : ωI(t) ≥ ln δ, ∀ nonempty proper UDS I ∈ In}
is a convex subset in Lie(A) which contains an unbound open cone.

Proof. It suffices to prove the lemma for the region

{t ∈ Lie(A) : ωI(t) ≥ 0, ∀ nonempty proper UDS I ∈ In}.
By our assumption on {gk} and Proposition 5.5, the graph G(gk) associated
to {gk} is connected. Now by applying Lemma 5.8 with the graph G(gk),
one can find x = (x1, x2, . . . , xn) ∈ Lie(A) such that

x ∈ {t ∈ Lie(A) : ωI(t) > 0,∀ nonempty proper UDS I ∈ In}.
Then by linearity, for any λ > 0

λx ∈ {t ∈ Lie(A) : ωI(t) > 0, ∀ nonempty proper UDS I ∈ In}.
This implies that there exists an unbounded open cone around the axis
{λx, λ > 0}, which is contained in

{t ∈ Lie(A) : ωI(t) ≥ 0, ∀ nonempty proper UDS I ∈ In}.
This completes the proof of the lemma. �

Lemma 6.2. For every k ∈ N the region Ωgk,δ contains a ball Bk of radius
rk such that rk →∞ as k →∞.

Proof. By definition, we know that

Ωgk,δ =
⋂
I∈In

{t ∈ Lie(A) : ωI(t) ≥ ln δ − ln ‖gkeI‖} .

Note that the origin belongs to Ωgk,δ by Proposition 5.7 for sufficiently large
k > 0. Now we can write

Ωgk,δ =
⋂

I UDS

{ωI(t) ≥ ln(δ/‖gkeI‖)} ∩
⋂

I not UDS

{ωI(t) ≥ ln(δ/‖gkeI‖)}
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=
⋂

I UDS

{ωI(t) ≥ ln δ} ∩
⋂

I not UDS

{ωI(t) ≥ ln(δ/‖gkeI‖)}

as gkeI = eI for any UDS I by Proposition 5.7. For I not UDS, we have
gkeI →∞.

Since gkeI →∞ for any I not UDS, the region⋂
I not UDS

{ωI(t) ≥ ln(δ/‖gkeI‖)}

contains a large ball Sk around the origin for sufficiently large k. By Lemma
6.1, the region ⋂

I UDS

{ωI(t) ≥ ln δ}

contains an unbounded cone C (which does not depend on k) with cusp at
the origin. This implies that

Ωgk,δ ⊃ Sk ∩ C

and Ωgk,δ contains a large ball Bk of radius rk with rk →∞ as k →∞. �

Proposition 6.3. For any 0 < δ < 1, we have

lim
k→∞

Vol(∂Ωgk,δ)

Vol(Ωgk,δ)
= 0.

Proof. The proposition follows from Lemma 4.4 and Lemma 6.2. �

Actually, we will apply the following variant of Proposition 6.3 in our
arguments later.

Corollary 6.4. Let 0 < δ1 < δ2 < 1. Then

lim
k→∞

Vol(Ωgk,δ2)

Vol(Ωgk,δ1)
= 1.

Proof. By definition, we know that Ωgk,δ2 ⊂ Ωgk,δ1 . Let {fi} be the collection
of the facets of Ωgk,δ1 , and denote by Pi the hyperplane determined by fi.
For each fi, let Bi be the unique cylinder with the following properties:

(1) the base of Bi is fi, and the height of Bi is equal to δ2 − δ1.
(2) Bi and Ωgk,δ1 lie in the same half-space determined by Pi.

Then one has

Ωgk,δ1 =
⋃
i

Bi ∪ Ωgk,δ2

and

Vol(Ωgk,δ1) ≤
∑
i

Vol(Bi)+Vol(Ωgk,δ2) = (δ2− δ1) Vol(∂Ωgk,δ1)+Vol(Ωgk,δ2)

Now the corollary follows from Proposition 6.3. �
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Now for each k ∈ N we choose the representative

1

mRn−1(Ωgk,δ)
(gk)∗µAx

in [(gk)∗µAx] and we will show in the following section that these represen-
tatives converge to a locally finite measure ν. From now on, we will fix a
δ > 0 for Ωgk,δ unless otherwise specified. We will also denote by

µAx|Ωgk,δ

the restriction of µAx on exp(Ωgk,δ)x (x = e SL(n,Z)).

7. Nondivergence

In this section, as mentioned above, we will study the nondivergence of
the sequence

1

mRn−1(Ωgk,δ)
(gk)∗µAx.

The study relies on a growth property of a special class of functions studied
by Eskin, Mozes and Shah [EMS97], and a non-divergence theorem proved
by Kleinbock and Margulis [KM98, Kle10]. As a corollary we will deduce
that these measures actually converge to a probability measure, which is
invariant under a unipotent subgroup. This is where Ratner’s theorem will
come into play in section 9 and help us prove the measure rigidity. Our
ultimate goal in this section is to prove Proposition 7.7.

First, we need the following definition of a class of functions, which is
introduced in [EMS97].

Definition 7.1 ([EMS97] Definition 2.1). Let d ∈ N and λ > 0 be given.
Define by E(d, λ) the set of functions f : R→ C of the form

f(t) =
d∑
i=1

d−1∑
l=0

ai,lt
leλit (∀t ∈ R)

where ai,l ∈ C and λi ∈ C with |λi| ≤ λ.

The following proposition describes the growth property of functions in
E(d, λ). We will denote by mRk the Lebesgue measure on Rk.

Proposition 7.2 ([EMS97] Cor.2.10). For any d ∈ N and λ > 0, there
exists a constant δ0 = δ0(d, λ) satisfying the following: given ε > 0, there
exists M > 0 such that for any f ∈ E(d, λ) and any interval Ξ of length at
most δ0

mR({t ∈ Ξ : |f(t)| < (1/M) sup
t∈Ξ
|f(t)|}) ≤ εmR(Ξ). (2)

The following theorem is essentially proved in [Kle10] and [KM98].



24 URI SHAPIRA AND CHENG ZHENG

Theorem 7.3 (Cf.[Kle10] Theorem 3.4, [KM98]). Let d ∈ N and Λ > 0.
Let δ0 = δ0(d,Λ) be as in Proposition 7.2. Suppose an interval Ξ ⊂ R of
length at most δ0, 0 < ρ < 1 and a continuous map h : Ξ → SL(n,R) are
given. Assume that for any discrete subgroup ∆ in Zn we have

(1) the function x→ ‖h(x)∆‖ on Ξ belongs to E(d, λ) and
(2) supx∈Ξ ‖h(x)∆‖ ≥ ρ.

Then for any ε < ρ, there exists a constant δ(ε) > 0 depending only on
E(d, λ) such that

mR({x ∈ Ξ : h(x)Zn ∩Bδ(ε) 6= {0}}) ≤ εmR(Ξ).

Proof. The proof is the same as in [KM98], but the inequality (2) is used
instead of the analogue property of (C,α)-good. �

Lemma 7.4. Let E be a normed vector space, and αi (1 ≤ i ≤ m) differ-
ent linear functionals on E. Then for any r > 0, we can find m vectors
x1, x2, . . . , xm ∈ Br(0) such that

det

((
eαi(xj)

)
1≤i≤m,1≤j≤m

)
6= 0.

Here Br(0) is the ball of radius r > 0 in E.

Proof. We can find a line L through the origin such that αi|L are different
functionals defined on L. This could be achieved by picking a line which
avoids all the kernels of αi − αj . Hence it suffices to prove the lemma for
dimE = 1.

Let E = R and αi(x) = λix for different λi’s. We will show inductively
that for any r > 0 there exist x1, x2, . . . , xm ∈ (−r, r) such that

det

((
eλixj

)
1≤i≤m,1≤j≤m

)
6= 0.

It is easy to verify for m = 1. Now for m+ 1 different λi’s, we compute

det

((
eλixj

)
1≤i≤m+1,1≤j≤m+1

)
= eλ1xm+1A1 + eλ2xm+1A2 + · · ·+ eλm+1xm+1Am+1

where Am+1 = det
((
eλixj

)
1≤i≤m,1≤j≤m

)
. By induction hypothesis, we can

find x1, x2, . . . , xm ∈ (−r, r) such that Am+1 6= 0. By the fact that eλix

are linearly independent functions and with this choice of x1, x2, . . . , xm,

the function det
((
eλixj

)
1≤i≤m+1,1≤j≤m+1

)
is a nonzero analytic function in

xm+1. Since zeros of any analytic function are isolated, this implies that

there exists a xm+1 ∈ (−r, r) such that det
((
eλixj

)
1≤i≤m+1,1≤j≤m+1

)
6=

0. �

The following proposition describes the supremum of a special function.
We will need this proposition to verify the assumption (2) in Theorem 7.3.
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Proposition 7.5. Let E and V be normed vector spaces and vi ∈ V (1 ≤
i ≤ m). Let f be a map from E to V defined by

f(x) =
m∑
i=1

eαi(x)vi

where the αi’s (1 ≤ i ≤ m) are different linear functionals on E. Suppose
that on an open ball R ⊂ E of radius r > 0 we have

eαi(x)‖vi‖ ≥M (∀x ∈ R)

for some M > 0. Then there exists a constant c > 0 which only depends on
the αi’s and r such that

sup
x∈R
‖f(x)‖ ≥ cM.

Proof. Let x0 be the center of R. By Lemma 7.4, we can find yi ∈ Br(0)

such that det(eαi(yj)) 6= 0. We fix this choice of yi’s which only depends on
αi’s and r. Let xi = x0 + yi ∈ R. We have(

eαi(yj)
)(

eαi(x0)vi

)
= (f(xi))(

eαi(x0)vi

)
=
(
eαi(yj)

)−1
(f(xi)) .

Let C =
∥∥∥(eαi(yj))−1

∥∥∥. Since eαi(x)‖vi‖ ≥ M , this implies that one of

‖f(xi)‖ is greater than or equal to M/(mC), and hence so is supx∈R ‖f(x)‖.
�

With the help of Theorem 7.3 and Proposition 7.5, we can now study the
nondivergence of the sequence 1

mRn−1 (Ωgk,δ)
(gk)∗µAx. In what follows, we will

denote by

Kr := {gΓ ∈ G/Γ : every nonzero vector in gZn has norm ≥ r}.
By Mahler’s compactness criterion, this is a compact subset in G/Γ. The
following proposition is crucial in our proof of Proposition 7.7.

Proposition 7.6. For any ε > 0, there exists a constant δ(ε) > 0 such that

mRn−1({t ∈ Ωgk,δ : gk exp(t)Zn /∈ Kδ(ε)}) ≤ εmRn−1(Ωgk,δ).

Proof. Fix a vector of norm one ~v ∈ Lie(A) such that the values

{ωI(~v) : I ∈ In}
are all different . Let d ∈ N and λ > 0 such that for any x0 ∈ Lie(A), any
l ∈ N and any w ∈ ∧lRn, the function

‖gk exp(x0 + t~v) · w‖, t ∈ R

belongs to E(d, λ) as defined in Definition 7.1. Here we denote by ‖ · ‖ the
standard norm on ∧lRn, and will write δ0 the constant δ0(d, λ) defined in
Proposition 7.2.
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We can cut the region Ωgk,δ into countably many disjoint small boxes of
diameter at most δ0 such that each box has one side parallel to ~v. In other
words, each box B is of the form

B = {x0 + t~v : x0 ∈ S, t ∈ Ξ}
where S is the base of B perpendicular to ~v, and Ξ = [0, a] is an interval for
some 0 < a ≤ δ0. In order to prove the proposition, it suffices to show that
for each such box B of diameter at most δ0, we have

mRn−1({t ∈ B : gk exp(t)Zn /∈ Kδ(ε)}) ≤ εmRn−1(B).

We will apply Theorem 7.3. Let ∆ be a discrete subgroup of rank l in Zn.
The point in ∧lR corresponding to ∆ can be written as∑

I∈Iln

aIeI

where aI ∈ Z. We construct a map from B to ∧lR by

f(t)|B = ∧l Ad(gk exp t)∆ =
∑

I∈In,I∈Iln

aIe
ωI(t)gkeI .

Since B ⊂ Ωgk,δ, by our construction of Ωgk,δ, we have

‖eωI(t)gkeI‖ ≥ δ, ∀t ∈ B
for any I ∈ In with I ∈ I ln. For each x0 ∈ S, we consider the map

t 7→ f(x0 + t~v)

from Ξ = [0, a] to ∧lR. By Proposition 7.5, we have

sup
t∈Ξ
‖f(x0 + t~v)‖ ≥ cδ.

Note that by Proposition 7.5, this inequality holds with a uniform constant
c > 0 for any ∆ ⊂ Zn. Also by definition, the map ‖f(x0 + t~v)‖ is a function
in E(d, λ). Hence we can apply Theorem 7.3 and obtain that

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn /∈ Kδ(ε)}) ≤ εmR(Ξ)

for some constant δ(ε) > 0 and for any x0 ∈ S. Now by integrating the
inequality above over the region x0 ∈ S, we have

mRn−1({t ∈ B : gk exp(t)Zn /∈ Kδ(ε)}) ≤ εmRn−1(B)

and then the proposition follows. �

Finally, we can prove our central result in this section.

Proposition 7.7. The sequence 1
mRn−1 (Ωgk,δ)

(gk)∗(µAx|Ωgk,δ) has a subse-

quence converging to a probability measure ν. Furthermore, we have

1

mRn−1(Ωgk,δ)
(gk)∗µAx → ν

and hence the sequence [(gk)∗µAx] converges to [ν]. Here the probability mea-
sure ν is invariant under the action of the unipotent subgroup limn→∞Ad(gk)A.
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Proof. The first claim follows from Proposition 7.6. For the second claim,
we will show that

1

mRn−1(Ωgk,δ)
(gk)∗µAx −

1

mRn−1(Ωgk,δ)
(gk)∗(µAx|Ωgk,δ)→ 0.

Let f ∈ Cc(X). Then by definition, there exists a small number δ′ < δ such
that ∫

f(gkA)dµAx =

∫
Ωgk,δ′

f(gkA)dµAx.

By Corollary 6.4, we have∣∣∣∣∣ 1

mRn−1(Ωgk,δ)

∫
f(gkA)dµAx −

1

mRn−1(Ωgk,δ)

∫
Ωgk,δ

f(gkA)dµAx

∣∣∣∣∣
=

∣∣∣∣∣ 1

mRn−1(Ωgk,δ)

∫
Ωgk,δ′

f(gkA)dµAx −
1

mRn−1(Ωgk,δ)

∫
Ωgk,δ

f(gkA)dµAx

∣∣∣∣∣
=

∣∣∣∣∣ 1

mRn−1(Ωgk,δ)

∫
Ωgk,δ′

\Ωgk,δ
f(gkA)dµAx

∣∣∣∣∣
≤ ‖f‖∞

mRn−1(Ωgk,δ′ \ Ωgk,δ)

mRn−1(Ωgk,δ)
→ 0.

Since gkµAx is invariant under the action of Ad(gk)A, the probability mea-
sure ν is invariant under the action of limn→∞Ad(gk)A, which is a unipotent
subgroup by our assumptions on {gk}. �

8. Nondivergence in terms of adjoint representations

In this section, we rewrite section 7 in terms of adjoint representations.
The advantage of doing so is that we can then apply Ratner’s theorem for
unipotent actions on homogeneous spaces.

Let Ad : SL(n,R)→ SL(g) be the adjoint representation of SL(n,R). The
Lie algebra sl(n,R) has a Q-basis {Eij : 1 ≤ i 6= j ≤ n} ∪ {Eii : 1 ≤ i ≤
n − 1}, where Eij (i 6= j) is the matrix with only nonzero entry 1 in the
ith row and the jth column, and Eii (1 ≤ i ≤ n− 1) is the diagonal matrix
with 1 in the (i, i)-entry and −1 in the (i + 1, i + 1)-entry. We will also
consider the representations ∧l Ad : SL(n,R) → SL(∧lg) for 1 ≤ l ≤ dim g.
A Q-basis of ∧lg is then {∧lEij : 1 ≤ i, j ≤ n}.

Let 1 ≤ l ≤ dim g. For ∧lg, its decomposition with respect to the action
of ∧l AdA is given by

∧lg =
∑
χ

gχ

where each χ is a linear functional on Lie(A) such that for any Y ∈ Lie(A)
we have

∧l Ad(exp(Y ))v = exp(χ(Y ))v, ∀v ∈ gχ.
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We know that each gχ has a Q-basis from {∧lEij : 1 ≤ i, j ≤ n}. We denote
by gχ(Z) the subset of integer vectors with respect to this basis, and by
W(g) the collection of such χ’s for all 1 ≤ l ≤ dim g.

Let g ∈ SL(n,R). We will define for gAΓ a convex polytope in Lie(A)
in terms of adjoint representations, which is, in a way, similar to the region
Ωg,δ in section 4. Let v ∈ gχ(Z) \ {0}. Then for t ∈ Lie(A), the vector

∧l Ad(g exp(t))v = eχ(t) ∧l Ad(g)v /∈ Bδ
if and only if

χ(t) ≥ ln δ − ln ‖ ∧l Ad(g)v‖.
Here we denote by Bδ the ball of radius δ > 0 around 0 with the norm ‖ · ‖
induced by a norm on g. In this way, we give the following

Definition 8.1. For any g ∈ SL(n,R) and δ > 0, define a region Rg,δ in the
Lie algebra Lie(A) by

Rg,δ = {t ∈ Lie(A) : χ(t) ≥ ln δ−ln ‖∧lAd(g)v‖,∀v ∈ gχ(Z)\{0} and ∀χ ∈ W(g)}.

We list some properties about the convex polytopes Rgk,δ for {gk}, which
are parallel to those in section 6. The proof of the following proposition is
similar to that in Lemma 4.3.

Proposition 8.2. The region Rg,δ is a bounded convex subset in Lie(A) for
any g ∈ SL(n,R).

Proposition 8.3. Let δ > 0. We have

(1) For any ε > 0 there exists δ(ε) > 0 such that

mRn−1(Rgk,δ(ε) ∩ Ωgk,δ) ≥ (1− ε)mRn−1(Ωgk,δ).

(2) For each k ∈ N, Rgk,δ contains a ball of radius rk such that rk →∞
as k →∞.

Proof. For any ε > 0, let δ(ε) be as in Proposition 7.6. By applying Mahler’s
compactness criterion on SL(∧lg) (1 ≤ l ≤ dim g), we can find a δ′(ε) > 0
such that

{t ∈ Ωgk,δ : gk exp(t)Zn ∈ Kδ(ε)} ⊂ Rgk,δ′(ε) ∩ Ωgk,δ.

Now the first part of the proposition follows from Proposition 7.6.
By Lemma 4.5 and Lemma 6.2, for each k ∈ N, the convex polytope

Rgk,δ(ε) ∩ Ωgk,δ contains a ball of radius rk and rk → ∞ as k → ∞, and
hence so does Rgk,δ for any δ > 0. �

Proposition 8.4. For any δ > 0, we have

lim
k→∞

Vol(∂Rgk,δ)

Vol(Rgk,δ)
= 0.

Proof. The proof is identical to that in Proposition 6.3. �
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Proposition 8.5. Let δ > 0. For any ε > 0, there exists a constant δ(ε) > 0
such that

mRn−1({t ∈ Rgk,δ : gk exp(t)Zn /∈ Kδ(ε)}) ≤ εmRn−1(Rgk,δ).

Proof. It is similar to Proposition 7.6, except that we replace the linear

functionals
∑l

j=1 tij by χ’s in W(g). �

Proposition 8.6. Let δ > 0. The sequence 1
mRn−1 (Rgk,δ)

gk(µAx|Rgk,δ) has a

subsequence converging to a probability measure ν. We also have

1

mRn−1(Rgk,δ)
gkµAx → ν

and hence the sequence [gkµAx] converges to [ν]. Furthermore, the prob-
ability measure ν is invariant under the action of the unipotent subgroup
limn→∞Ad(gk)A.

Proof. It is identical to Proposition 7.7 with Ωgk,δ replaced by Rgk,δ. �

The following is an immediate corollary of Proposition 3.3, Proposition
7.7 and Proposition 8.6.

Corollary 8.7. For any δ > 0, we have

lim
k→∞

mRn−1(Ωgk,δ)

mRn−1(Rgk,δ)
= 1.

A single convex polytope Rgk,δ for each gk will suffice in our arguments
below. So we will fix a δ > 0 for Rgk,δ in the rest of the paper, unless
otherwise specified.

9. Ratner’s theorem and linearization

Thanks to Proposition 8.6, we can apply measure classification theorem
for unipotent actions on homogeneous spaces. It was first conjectured by
Raghunathan and Dani [Dan81], and later proved by Ratner in her seminal
work [Rat90a,Rat90b,Rat91]. Here we will proceed by following the frame-
work of [EMS96] and [MS95]. Readers may refer to [Sha91] and [DM93] for
more details. This section is the final step of preparation for the proof of
Theorem 2.4, and is devoted to proving Proposition 9.9.

9.1. Prerequisites. We start by recalling some well-known results, which
will be needed later in this section. Let H be the collection of all closed con-
nected subgroups H of G such that H ∩Γ is a lattice in H and the subgroup
generated by all the unipotent one-parameter subgroups of G contained in
H acts ergodically on HΓ/Γ with respect to the H-invariant probability
measure.

Theorem 9.1 ([Rat91] Theorem 1.1, [DM93] Proposition 2.1). H is a count-
able collection.
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Let W be a subgroup of G which is generated by unipotent one-parameter
subgroups of G contained in W . For H ∈ H, define

N(H,W ) = {g ∈ G : W ⊂ gHg−1}

S(H,W ) =
⋃

H′∈H,H′⊂H,H′ 6=H
N(H ′,W )

and

TH(W ) = π(N(H,W )\S(H,W )) = π(N(H,W ))\π(S(H,W ))

where π : G→ G/Γ is the natural projection. We have for any H1, H2 ∈ H

TH1(W ) ∩ TH2(W ) 6= ∅ ⇐⇒ TH1(W ) = TH2(W )

Theorem 9.2 ([Rat91], [MS95] Theorem 2.2). Let µ be a W -invariant prob-
ability measure on X. For every H ∈ H, let µH denote the restriction of µ
on TH(W ). Then one has the following:

(1) For all Borel measurable subsets F ⊂ X,

µ(F ) =
∑
H∈H∗

µH(F )

where H∗ ⊂ H is a countable set consisting of representatives from
Γ-conjugacy classes in H.

(2) Each µH is W -invariant. For any W -ergodic component ν of µH ,
there exists g ∈ N(H,W ) such that ν is the unique gHg−1-invariant
probability measure on the closed orbit gHΓ/Γ.

Now in our case, the subgroup W will be limn→∞Ad(gk)A. By our as-
sumptions, W is a unipotent subgroup of G. In the following, we will fix
a subgroup H ∈ H (H 6= G). Let g denote the Lie algebra of G and let h
denote the Lie subalgebra of H. For d = dim h, put VH = ∧dg, the d-th ex-
terior power, and consider the linear G-action on VH via the representation
∧d Ad, the d-th exterior of the adjoint representation of G on g. Since H is
a Q-group, we can find an integral point pH ∈ ∧dh\{0}. We fix this pH and
let ηH : G→ VH be the map defined by

ηH(g) = g · pH = (∧d Ad g)pH

for all g ∈ G. Note that

η−1
H (pH) = {g ∈ N(H) : det(Ad g|h) = 1}

where N(H) denotes the normalizer of H in G.
Put ΓH = N(H) ∩ Γ. Then for any χ ∈ ΓH , we have χ(HΓ/Γ) = HΓ/Γ

and χ preserves the volume of HΓ/Γ. Therefore | det(Adχ|h)| = 1 and
χ · pH = ±pH .

In view of this we define V H = VH/{1,−1} if ΓH · pH = {pH ,−pH} and
define V H = VH if ΓH · pH = pH . Define the orbit map of G on V H

ηH : G→ V H
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by ηH(g) = g · pH where pH denotes the image of pH in V H . We denote by
LH the Zariski closure of ηH(N(H,W )) in V H .

Theorem 9.3 ([DM93] Theorem 3.4). The orbit Γ · pH is discrete in V H .

Proposition 9.4 ([DM93] Proposition 3.2). Let LH denote the Zariski clo-
sure of ηH(N(H,W )) in V H . Then

η−1
H (LH) = N(H,W ).

Proposition 9.5 ([MS95] Proposition 3.2). Let D be a compact subset of
LH . Define

S(D) = {g ∈ η−1
H (D) : gχ ∈ η−1

H (D) for some χ ∈ Γ \ ΓH}.
Then we have the following:

(1) S(D) ⊂ S(H,W ).
(2) π(S(D)) is closed in X.
(3) For any compact set K ⊂ X \ π(S(D)), there exists a neighbourhood

Φ of D in V H such that every y ∈ π(η−1
H (Φ)) ∩ K has a unique

representation in Φ; that is, the set ηH(π−1(y)) ∩ Φ consists of a
single element.

9.2. Proof of Proposition 9.9. Now we begin our journey towards Propo-
sition 9.9. Let {f1, f2, . . . , fm} be a set of polynomials defining LH in V H .
In the rest of the section, we will fix a vector of norm one ~v ∈ Lie(A) such
that all the linear functionals χ ∈ W(g) are different on ~v. Also, one can
find d ∈ N, and λ > 0 such that for any x0 ∈ Lie(A), the functions of t ∈ R

‖(gk exp(x0 + t~v) · w‖2, fj(gk exp(x0 + t~v) · w), 1 ≤ j ≤ m
belong to E(d, λ) as defined in Definition 7.1. Here the norm ‖ · ‖ on V H is
induced by a norm on g. We will write δ0 for the constant δ0(d, λ) defined
in Proposition 7.2.

Proposition 9.6 (Cf.[DM93] Proposition 4.2). Let a compact set C ⊂ LH
and ε > 0 be given. Then there exists a compact set D ⊂ LH with C ⊂ D
such that for any neighborhood Φ of D in V H , there exists a neighborhood Ψ
of C in V H with the following property. For any x0 ∈ Lie(A), w ∈ V H and
any interval Ξ ⊂ [0, δ0], if {gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ, then we have

mR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Ψ})
≤ εmR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Φ}).

Proof. Let d and λ be defined as above. We choose a ball B0(r) of radius
r > 0 centered at 0 in V H such that the closure C ⊂ B0(r). Now for a given

ε > 0, let M > 0 be the constant as in Proposition 7.2. Denote by B0(M
1
2 r)

the ball of radius M
1
2 r > 0 centered at 0. Then we take

D := B0(M
1
2 r) ∩ LH ,

and we will prove the proposition for this D.
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Indeed, for any neighborhood Φ of D in V H , one can find α > 0 such that

{u ∈ V H : ‖u‖ ≤M
1
2 r, |fj(u)| ≤ α (1 ≤ j ≤ m)} ⊂ Φ.

Define

Ψ := {u ∈ V H : ‖u‖ < r, |fj(u)| < α/M}
which is a neighborhood of C in V H , and contained in Φ. We show that Φ
and Ψ satisfy the desired property.

Suppose

{gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ

for x0 ∈ Lie(A), w ∈ V H and Ξ ⊂ [0, δ0]. Denote by I the following closed
subset

{t ∈ Ξ : ‖gk exp(x0+t~v)·w‖ ≤M
1
2 r, |fj(gk exp(x0+t~v)·w)| ≤ α (1 ≤ j ≤ m)}.

One can write I as a disjoint union of the connected components Ii of I,
namely

I =
⋃
Ii.

On each Ii, we have either

sup
t∈Ii
‖gk exp(x0 + t~v) · w‖2 = Mr2

or

sup
t∈Ii
|fj(gk exp(x0 + t~v) · w)| = α

for some 1 ≤ j ≤ m. Since ‖gk exp(x0 + t~v) · w‖2 and fj(gk exp(x0 + t~v) ·
w) (1 ≤ j ≤ m) belong to E(d, λ), by Proposition 7.2 and the definition of
Ψ, we obtain

mR({t ∈ Ii : gk exp(x0 + t~v) · w ∈ Ψ}) ≤ εmR(Ii).

Now we compute

mR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Ψ})
=mR({t ∈ I : gk exp(x0 + t~v) · w ∈ Ψ})

≤
∑
i

mR({t ∈ Ii : gk exp(x0 + t~v) · w ∈ Ψ})

≤
∑
i

εmR(Ii) = εmR(I)

≤εmR({t ∈ Ξ : gk exp(x0 + t~v) · w ∈ Φ}),

and this concludes the proof of the proposition. �

For our purpose, we introduce a subregion of Rgk,δ as follows. By Propo-
sition 8.4, we know that

lim
k→∞

Vol(∂Rgk,δ)

Vol(Rgk,δ)
= 0.
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Therefore, for each k ∈ N, we can find a constant dk > 0 such that

lim
k→∞

dk =∞ and lim
k→∞

dk Vol(∂Rgk,δ)

Vol(Rgk,δ)
= 0.

We define a subregion in Rgk,δ by

R′gk,δ = {t ∈ Lie(A) : χ(t) ≥ ln δ+dk−ln |∧lAd(gk)v|, ∀v ∈ gχ(Z)\{0} and ∀χ ∈ W(g)}.

Here we list some properties about R′gk,δ.

Lemma 9.7. Let dk and R′gkδ be as above.

(1) We have

lim
k→∞

Vol(R′gk,δ)

Vol(Rgk,δ)
= 1.

(2) For any functional χ ∈ W(g) and any integer vector v ∈ gχ we have

‖eχ(t)(∧l Ad(gk)v)‖ ≥ δedk (∀t ∈ R′gk,δ).

(3) For x0 ∈ R′gk,δ and the interval Ξ = [0, δ0] ⊂ R, there exists a
constant c > 0 which only depends on the linear functionals χ’s and
δ0, such that for any integer vector w ∈ ∧lg (1 ≤ l ≤ dim g), one has

sup
t∈Ξ
‖ ∧l (Ad(gk exp(x0 + t~v))) · w‖ ≥ cδedk .

Proof. The proof of the first claim is similar to that of Corollary 6.4. Indeed,
let {fi} be the collection of the facets of Vol(Rgk,δ), and denote by Pi the
hyperplane determined by fi. For each fi, let Bi be the unique cylinder with
the following properties:

(a) the base of Bi is fi, and the height of Bi is equal to dk.
(b) Bi and Rgk,δ lie in the same half-space determined by Pi.

Then one has
Vol(Rgk,δ) =

⋃
i

Bi ∪Vol(R′gk,δ)

and

Vol(Rgk,δ) ≤
∑
i

Vol(Bi) + Vol(R′gk,δ)) = dk Vol(∂Rgk,δ) + Vol(R′gk,δ).

Now the first claim follows from our choice of dk.
The second claim follows easily from the definition of R′gk,δ. To prove the

last statement, we write for any integer vector w ∈ ∧lg

w =
∑
χ

vχ

where vχ ∈ gχ is the integral gχ-coordinate of w. One can compute

(∧l Ad(gk exp(t))) · w =
∑
χ

eχ(t) ∧l Ad(gk)vχ.

Now the last claim follows from the second claim and Proposition 7.5. �
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The following proposition is an important step towards Proposition 9.9.

Proposition 9.8 (Cf.[MS95] Proposition 3.4). Let a compact set C ⊂ LH
and 0 < ε < 1 be given. Then there exists a closed subset S of X contained in
π(S(H,W )) with the following property: for a given compact set K ⊂ X \S,
there exists a neighbourhood Ψ of C in V H such that for sufficiently large
k, for any x0 ∈ R′gk,δ and Ξ ⊂ [0, δ0], we have

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ))}) ≤ εmR(Ξ).

Proof. For the given C and ε, we obtain a compact set D ⊂ LH as in
Proposition 9.6. For this D, we apply Proposition 9.5 and obtain a closed
subset S = π(S(D)) of X contained in π(S(H,W )). Now let K be any
compact subset of X \ S and let Φ be an open neighborhood of D in V H as
in Proposition 9.5. Finally let Ψ be a neighborhood of C in V H such that
the inequality in Proposition 9.6 is satisfied.

By the choice of x0 and Lemma 9.7, for any integer vector w ∈ ∧dg we
have

sup
t∈Ξ
‖gk exp(x0 + t~v) · w‖ ≥ cδedk

for some c > 0 and hence

{gk exp(x0 + t~v) · w : t ∈ Ξ} 6⊂ Φ

for sufficiently large k.
Now for any s ∈ Ξ with

gk exp(x0 + s~v)Zn ∈ K ∩ π(η−1
H (Ψ)),

by Proposition 9.5, there is a unique element ws in ηH(Γ) such that

gk exp(x0 + s~v) · ws ∈ Ψ,

and let Is = [as, bs] be the largest closed interval in Ξ containing s such that

(1) for any t ∈ Is, we have

gk exp(x0 + t~v) · ws ∈ Φ

(2) either gk exp(x0 + as~v) · ws or gk exp(x0 + bs~v) · ws ∈ Φ \ Φ.

We denote by F the collection of all these intervals Is as s runs over Ξ with

gk exp(x0 + s~v)Zn ∈ K ∩ π(η−1
H (Ψ)).

By Proposition 9.5 property (3), we know that the intervals in F cover Ξ at
most twice. Also by Proposition 9.6, we have

mR(t ∈ Is : gk exp(x0 + t~v) · ws ∈ Ψ)

≤ εmR(t ∈ Is : gk exp(x0 + t~v) · ws ∈ Φ)

≤ εmR(Is).

Therefore

mR(t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ)))
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≤
∑
Is∈F

mR(t ∈ Is : gk exp(x0 + t~v) · ws ∈ Ψ)

≤ ε
∑
Is∈F

mR(Is) ≤ 2εmR(Ξ).

This completes the proof of the proposition. �

Finally, we reach the following

Proposition 9.9. Let a compact set C ⊂ LH and 0 < ε < 1 be given.
Then there exists a closed subset S of X contained in π(S(H,W )) with
the following property: for a given compact set K ⊂ X \ S, there exists a
neighbourhood Ψ of C in V H such that for sufficiently large k > 0 we have

mRn−1({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) ≤ εmRn−1(Rgk,δ).

Proof. By Lemma 9.7, let k be sufficiently large such that

Vol(Rgk,δ \R′gk,δ)
Vol(Rgk,δ)

≤ ε

2
.

We cut the region R′gk,δ into countably many disjoint small boxes of diameter

at most δ0 such that each box has one side parallel to ~v. In other words,
each box B is of the form

B = {x0 + t~v : x0 ∈ S and t ∈ Ξ}

where S is the base of B perpendicular to ~v, and Ξ = [0, a] is an interval for
some 0 < a ≤ δ0. Denote by F the collection of these boxes B.

For any B ∈ F , and for each x0 ∈ S (S the base of B), by Proposition
9.8 we obtain that

mR({t ∈ Ξ : gk exp(x0 + t~v)Zn ∈ K ∩ π(η−1
H (Ψ))}) ≤ ε

2
mR(Ξ)

for sufficiently large k. By integrating the inequality above over the region
x0 ∈ S, one has

mRn−1({t ∈ B : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) ≤ ε

2
mRn−1(B).

Now we compute

mRn−1({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

≤mRn−1({t ∈ Rgk,δ \R
′
gk,δ

: gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

+
∑
B∈F

mRn−1({t ∈ B : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))})

≤ ε
2
mRn−1(Rgk,δ) +

∑
B∈F

ε

2
mRn−1(B) ≤ εmRn−1(Rgk,δ)

and then the proposition follows. �
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10. Proofs of Theorem 2.4 and Theorem 2.5

Proof of Theorem 2.4. We will prove the theorem by induction. Let gk be a
sequence in SL(n,R). As explained at the end of section 4, without loss of
generality, we may assume that gk’s are in the upper triangular unipotent
subgroups of SL(n,R), and each entry of gk is either zero or diverges to
infinity.

Suppose for a start that A(A, gk) = {0}. By passing to a subsequence, we
may further assume that Ad gk(LieA) converges to a subalgebra consisting
of nilpotent elements in g, in the space of Grassmanian of g. Then by
Proposition 8.6, after passing to a subsequence, [(gk)∗µAx] converges to [ν]
for a probability measure ν. Furthermore, we have

1

mRn−1(Rgk,δ)
(gk)∗(µAx|Rgk,δ)→ v

and ν is invariant under the unipotent subgroup exp(limn→∞Ad gk(LieA)).
We will apply Ratner’s theorem and the technique of linearization to prove

that ν is the Haar measure on SL(n,R)/ SL(n,Z). According to Theorem
9.2, suppose by way of contradiction that for some H ∈ H∗ (H 6= G) we
have ν(TH(W )) > 0. Then we can find a compact subset C ⊂ TH(W ) such
that

ν(C) = α > 0.

Now let 0 < ε < α, C1 = ηH(C) and S be the closed subset of X as in
Proposition 9.9. Since C ∩ S = ∅, we can pick a compact neighborhood
K ⊂ X \S of C. Then by Proposition 9.9, there exists a neighborhood Ψ of
C in V H such that for sufficiently large k > 0

mRn−1({t ∈ Rgk,δ : gk exp(t)Zn ∈ K ∩ π(η−1
H (Ψ))}) ≤ εmRn−1(Rgk,δ)

and

C ⊂ K ∩ π(η−1
H (Ψ)).

This implies that

ν(C) ≤ ε < α

which contradicts the equation above. Hence ν is the Haar measure on
SL(n,R)/ SL(n,Z).

Now suppose that A(A, gk) 6= {0}. Then by Corollary 5.3, there exists
an element a ∈ A such that Ad gk(a) = a. This implies that all elements
in A and gk belong to CG(a) where CG(a) denotes the centralizer of a in
SL(n,R). Moreover, we have

CG(a) ∼= S ×H

where S is the center of CG(a), H is the semisimple component of CG(a)
and H is isomorphic to the product of various SL(ni,R) with ni < n, i.e.

H ∼=
∏

SL(ni,R).
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Let Ai = A ∩ SL(ni,R) be the connected component of the full diagonal
subgroup in SL(ni,R), and we have

A = S0 ×
∏

Ai.

Since gk ∈ N is unipotent (∀k ∈ N), one has gk ∈ H. Then we can write
gk =

∏
gi,k ∈

∏
SL(ni,R).

The above discussions tell us that our problem now can be reduced to the
following setting (recall that x = eSL(n,Z)):

(1) the measure µAx is supported in the homogeneous space CG(a)/(Γ∩
CG(a)), where one has

CG(a)/(Γ ∩ CG(a))

=S/(Γ ∩ S)×H/(Γ ∩H)

=S/(Γ ∩ S)×
∏

(SL(ni,R)/ SL(ni,Z)).

(2) the measure µAx can be decomposed, according to the decomposition
of CG(a)/(Γ ∩ CG(a)), as

µAx = µS0 ×
∏

µAixi .

Here µS0 denotes the S0-invariant measure on S0/(Γ ∩ S0) = S0 ∼=
S/(Γ ∩ S). For each i, xi = e SL(ki,Z) is the identity coset in
SL(ni,R)/ SL(ni,Z), and µAixi denotes the Ai-invariant measure on
Aixi in SL(ni,R)/ SL(ni,Z).

(3) one pushes µAx by the sequence {gk} in the space CG(a)/(Γ∩CG(a))
in the following manner:

(gk)∗µAx = µS0 ×
∏

(gi,k)∗µAixi .

Since ni < n, we can now apply the induction hypothesis to each (gi,k)∗µAixi ,
and obtain that [gi,kµAixi ] converges to an equivalence class of a periodic
measure [µGiyi ] on SL(ni,R)/ SL(ni,Z). Now the first paragraph of the the-
orem follows by grouping all the measures [µGiyi ] and µ0

S back together in
the space SL(n,R)/ SL(n,Z).

As for the second paragraph of the theorem, it essentially follows from the
inductive steps (especially, the induction hypothesis) above. Indeed, one can
repeat the induction hypothesis several times until we reach the following
setting (here we still assume that gk’s are in the upper triangular unipotent
subgroups of SL(n,R), and each entry of gk is either zero or diverges to
infinity. ): there is a connected subgroup S ⊂ A such that

(1) if we denote by CG(S) the centralizer of S in G = SL(n,R), then
CG(S) = S × H, where H is the semisimple component of CG(S)
and H is isomorphic to the product of various SL(ni,R) with ni < n.
Also gk ∈ CG(S).
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(2) the measure µAx is supported in the homogeneous space CG(S)/(Γ∩
CG(S)), where one has

CG(S)/(Γ ∩ CG(a))

=S/(Γ ∩ S)×H/(Γ ∩H)

=S/(Γ ∩ S)×
∏

(SL(ni,R)/ SL(ni,Z)).

(3) the measure µAx can be decomposed, according to the decomposition
of CG(S)/(Γ ∩ CG(S)), as

µAx = µS0 ×
∏

µAixi .

Here µS0 denotes the S0-invariant measure on S0/(Γ ∩ S0) = S0 ∼=
S/(Γ ∩ S). For each i, xi = e SL(ki,Z) is the identity coset in
SL(ni,R)/ SL(ni,Z), Ai = A ∩ SL(ni,R) and µAixi denotes the Ai-
invariant measure on Aixi in SL(ni,R)/SL(ni,Z).

(4) one pushes µAx by the sequence {gk} in the space CG(S)/(Γ∩CG(S))
in the following manner:

(gk)∗µAx = µS0 ×
∏

(gi,k)∗µAixi .

(5) futhermore, for eachAixi in SL(ni,R)/ SL(ni,Z), one hasA(Ai, gi,k) =
{0}.

Here one can see that S = A(A, gk). Now we can apply the starting step
of the induction (the case A(A, gk) = {0}) to each µAixi and obtain that
[(gi,k)∗µAixi ] converges to the equivalence class of the Haar measure on
SL(ni,R)/SL(ni,Z). So by the decompositions in (2) and (3), [(gK)∗µAx]
converges to the equivalence class of the periodic measure [µCG(S)0x].

If we allow {gk} to be arbitrary, then any limit point of the sequence
[(gk)∗µAx] is a translate of the equivalence class [µCG(S)0x]. This completes
the proof of the theorem. �

The following is an immediate corollary from the proof of Theorem 2.4,
which gives an example of λk’s in Theorem 2.7 for A(A, gk) = {0}. This also
generalizes the result in [OS14]. We will apply this special case of Theorem
2.7 in the counting problem in section 11.

Corollary 10.1 (Cf. Theorem 2.7). For a sequence gk ∈ KN with A(A, gk) =
{0}, we have

1

mRn−1(Ωgk,δ)
(gk)∗µAx → µG/Γ

where µG/Γ is the Haar measure on G/Γ.

In the rest of this section, we will prove Theorem 2.5. As before, let
mX denote the Haar measure on X = G/Γ. Let H be a connected reductive
group containing A. It is known that up to conjugation by an element in the
Weyl group of G, H consists of diagonal blocks with each block isomorphic
to GL(k,R) with k < n. We will assume, for convenience, that H has the
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form of diagonal blocks, since conjugations by Weyl elements do not affect
the theorem.

The following lemma clarifies an assumption in Theorem 2.5.

Lemma 10.2. Let Ax be a divergent orbit in X and let H be a connected
reductive group containing A. Then Hx is closed in X.

Proof. By the classification of divergent A-orbits of Margulis which appears
in the appendix of [TW03], we may assume without loss of generality that
x is commensurable to Zn. Thus, it is enough to prove the lemma for
x = Zn. Then the lemma follows easily for any reductive group H under
consideration. �

By reasoning in the same way as at the beginning of section 4, it is
harmless to assume x = e SL(n,Z) in the proof of Theorem 2.5. So in the
sequel, x will always denote the identity coset in SL(n,R)/ SL(n,Z)

Let P be the standard Q-parabolic subgroup in G having H as (the con-
nected component of) a Levi component. Let U ⊂ N be the unipotent
radical of P . For any element g ∈ G, we can write

g = kuh

where k ∈ K = SO(n,R), u ∈ U and h ∈ H. Since

g∗µH = (ku)∗µH ,

we may assume that gk ∈ U in the theorem. We write

H = S ×Hss

where S is the connected component of the center of H, and Hss is the
semisimple component of H. We will denote by Ass the connected compo-
nent of the full diagonal group in Hss. Note that we have

A = S ×Ass.

By Theorem 2.4, we can find a sequence of upper triangular unipotent ma-
trices hk ∈ H such that

[(hk)∗µAx]→ [µHx]

and this happens when Ad(hk) Lie(Ass) converges to a nilpotent subalgebra
in g = sl(n,R). We will fix such a sequence {hk}.

In what follows, we will keep the assumption on the sequence {gk} that
gk’s are in the upper triangular unipotent subgroup U , and each entry of gk
either equals 0 or diverges to infinity.

Proposition 10.3. If the subalgebra A(S, gk) of Lie(A) equals {0}, then
for any subsequence {gmk} of {gm} and any subsequence {hnk} of {hn}, the
subalgebra A(A, gmkhnk) of Lie(A) equals {0}.
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Proof. It suffices to show that every element Y ∈ Lie(A) diverges to ∞
under the adjoint action of gmkhnk . Let

Y = Y1 + Y2

where Y1 ∈ Lie(S) and Y2 ∈ Lie(Ass). If Y2 = 0, then Y diverges to ∞ by
the condition A(S, gk) = {0}. If Y2 6= 0, then we have

Ad(gmkhnk)(Y )

= Ad(gnk)(Y1 + Ad(hnk)Y2)

= (Ad(gnk)(Y1 + Ad(hnk)Y2)− (Y1 + Ad(hnk)Y2))

+(Y1 + Ad(hnk)Y2).

Since gn ∈ U and Y1 + Ad(hnk)Y2 ∈ Lie(H), we know that Ad(gnk)(Y1 +
Ad(hnk)Y2) − (Y1 + Ad(hnk)Y2) ∈ Lie(U). Also Ad(hnk)Y2 ∈ Lie(H) and
Ad(hnk)Y2 → ∞ by our choice of {hn}. Hence Ad(gmkhnk)(Y ) diverges to
∞. �

We will fix a nonnegative function f0 ∈ Cc(X) such that supp(f0) contains
the compact orbit NZn in X. This implies that for any g ∈ N we have∫

f0dg∗µAx > 0.

Proposition 10.4. Suppose that the subalgebra A(S, gk) of Lie(A) equals
{0}. Let f ∈ Cc(X). Then for any ε > 0, there exists N > 0 such that for
any m,n > N ∣∣∣∣ ∫ fd(gmhn)µAx∫

f0d(gmhn)µAx
−
∫
fdmX∫
f0dmX

∣∣∣∣ ≤ ε.
Proof. Suppose that there exists ε > 0 such that for any k > 0 there exist
mk, nk > k with the condition∣∣∣∣ ∫ fd(gmkhnk)µAx∫

f0d(gmkhnk)µAx
−
∫
fdmX∫
f0dmX

∣∣∣∣ ≥ ε.
By Proposition 10.3, we know that the subalgebra A(A, gmkhnk) = {0}.
Hence by Theorem 2.4, we have

[(gmkhnk)µAx]→ [mX ]

which contradicts the inequality above. This completes the proof of the
proposition. �

Proof of Theorem 2.5. We will prove the theorem by induction. Let gk be a
sequence in G and without loss of generality, we may assume that gk’s are
in the upper triangular unipotent subgroup U , and each entry of gk either
equals 0 or diverges to infinity.

Suppose that A(S, gk) = {0}. Let f ∈ Cc(X). By Proposition 10.4, for
any ε > 0 there exists N > 0 such that for any m,n > N∣∣∣∣ ∫ fd(gmhn)µAx∫

f0d(gmhn)µAx
−
∫
fdmX∫
f0dmX

∣∣∣∣ ≤ ε.



TRANSLATES OF DIVERGENT DIAGONAL ORBITS 41

Now we fix m, let n→∞ and obtain∣∣∣∣ ∫ fdgmµHx∫
f0dgmµHx

−
∫
fdmX∫
f0dmX

∣∣∣∣ ≤ ε.
This implies that [gkµHx]→ [mX ].

Now suppose that A(S, gk) of Lie(A) is not trivial. By Proposition 5.3,
there exists a ∈ Lie(S) such that gk commutes with a. This implies that all
elements of H and gk belong to CG(a). Moreover, we have

CG(a) ∼= S′ ×H ′

where S′ is the center of CG(a), H ′ is the semisimple component of CG(a)
and H ′ is isomorphic to the product of various SL(ni,R) with ni < n, i.e.

H ′ ∼=
∏
i

SL(ni,R).

Let Hi be the reductive subgroup H ∩ SL(ni,R) in SL(ni,R), and we have

H = S′0 ×
∏
i

Hi.

Since gk ∈ N is unipotent (∀k ∈ N), one has gk ∈ H ′. Then we can write
gk =

∏
i gi,k (gi,k ∈ SL(ni,R)).

Similar to the arguments in the proof of Theorem 2.4, the above discus-
sions imply that the problem is in the following setting (x = e SL(n,Z)):

(1) the measure µHx is supported in the homogeneous space CG(a)/(Γ∩
CG(a)), where one has

CG(a)/(Γ ∩ CG(a))

=S′/(Γ ∩ S′)×H ′/(Γ ∩H ′)

=S′/(Γ ∩ S′)×
∏

(SL(ni,R)/ SL(ni,Z)).

(2) the measure µHx can be decomposed, according to the decomposition
of CG(a)/(Γ ∩ CG(a)), as

µHx = µS′0 ×
∏

µHixi .

Here µS′0 denotes the S′0-invariant measure on S0/(Γ∩S′0) = S′0 ∼=
S′/(Γ ∩ S′). For each i, xi = eSL(ki,Z) is the identity coset in
SL(ni,R)/ SL(ni,Z), and µHixi denotes the Hi-invariant measure on
Hixi in SL(ni,R)/ SL(ni,Z).

(3) one pushes µHx by the sequence {gk} in the space CG(a)/(Γ∩CG(a)):

(gk)∗µHx = µS′0 ×
∏

(gi,k)∗µHixi .

Since ni < n, we can now apply the induction hypothesis to each (gi,k)∗µHixi ,
and obtain that [(gi,k)∗µHixi ] converges to an equivalence class of a periodic
measure [µGiyi ] on SL(ni,R)/SL(ni,Z). Now the first paragraph of the the-
orem follows by gluing all the measures [µGiyi ] and µ0

S back together in the
space SL(n,R)/SL(n,Z).
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As for the second paragraph of the theorem, the proof is very similar to
Theorem 2.4. One just needs to replace A in the proof of Theorem 2.4 by
the reductive group H. This completes the proof of Theorem 2.5. �

11. An application to counting problem

In this section, we will prove Theorem 2.9. Let p0(λ) be a monic polyno-
mial in Z[x] such that p0(λ) splits completely in Q. Then by Gauss lemma,
we have p(λ) = (λ−α1)(λ−α2) · · · (λ−αn) for αi ∈ Z. We assume that αi
are distinct and nonzero. Let M(n,R) be the space of n× n matrices with
the norm

‖M‖2 = Tr(M tM) =
∑

1≤i,j≤n
x2
ij

for M = (xij)1≤i,j≤n. Note that this norm is Ad(K)-invariant. We will
denote by BT the ball of radius T centered at 0 in M(n,R). We denote by

Mα = diag(α1, α2, . . . , αn) ∈M(n,Z).

For M ∈M(n,R), we denote by pM (λ) the characteristic polynomial of M .
We consider

V (R) = {M ∈M(n,R) : pM (λ) = p0(λ)}
and its subset of integral points

V (Z) = {M ∈M(n,Z) : pM (λ) = p0(λ)}.
We would like to get an asymptotic formula for

#|V (Z) ∩BT | = #|{M ∈M(n,Z) : pM (λ) = p0(λ), ‖M‖ ≤ T}|.
We begin with the following proposition which is a corollary of [BHC62]

and [LM33].

Proposition 11.1. We have

Ad(SL(n,R))Mα = V (R)

and there are finitely many SL(n,Z)-orbits in V (Z). The number of the
SL(n,Z)-orbits in V (Z) is equal to the number of classes of nonsingular
ideals in the ring Z[Mα].

By Proposition 11.1, it suffices to compute the integral points of an
SL(n,Z)-orbit. In what follows, we will consider the SL(n,Z)-orbit of Mα.
We will apply Theorem 2.7 (more precisely, Corollary 10.1) with initial point
x = eΓ to count

#|Ad(SL(n,Z))Mα ∩BT |.
For any other SL(n,Z)-orbit of M ′ ∈ V (Z), there exists Mq ∈ SL(n,Q) such
that

Ad(Mq)M
′ = Mα

and the treatment for Ad(SL(n,Z))M ′ would be similar, just with a change
of initial point from eΓ to xq = MqΓ. See also the beginning of section 4.
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Now let h = (uij) ∈ N and write

Ad(h)Mα = hMαh
−1 = (xij)

where xii = αi and uij = 0 (i > j). We have

hMα = (xij)h

and

αjuij =
∑
k

xikukj

(αj − αi)uij =
∑
k 6=i

xikukj .

Let

qi(x) =

i∏
k=1

(x− αk).

The following lemmas (Lemma 11.2 and Lemma 11.3) describe the relation
between uij and xij .

Lemma 11.2. For j > i, we have

uij =
1

αj − αi
xij + fij(x)

where fij is a polynomial in variables xpq with 0 < q−p < j− i, and fij = 0
for j − i = 1. In particular, we have the change of coordinates of the Haar
measure on N ∏

j>i

duij =
1∏

j>i |αj − αi|
∏
j>i

dxij .

Proof. It is easy to see that uij = xij = 0 (i > j) and uii = 1. We prove the
proposition by induction on j − i. For j − i = 1, we have

uij = uj−1,j =
1

αj − αj−1

∑
k 6=j−1

xj−1,kukj =
1

αj − αj−1
xj−1,j .

Now we have

(αj − αi)uij =
∑
k 6=i

xikukj =
∑
i<k<j

xikukj + xij

where j − k < j − i. We complete the proof by applying the induction
hypothesis on ukj . �

Lemma 11.3. For j > i, we have

uij =

j−1∏
k=i

xk,k+1

αj − αk
+ fij(x) =

qi−1(αj)

qj−1(αj)

j−1∏
k=i

xk,k+1 + fij(x)

where fij(x) is a polynomial in variables xpq (p < q) of degree less than j−i.
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Proof. We prove the proposition by induction on j − i. For j − i = 1, we
have

(αj − αi)uij = (αj − αj−1)uj−1,j =
∑
k 6=j−1

xj−1,kukj = xj−1,j .

Now we have
(αj − αi)uij =

∑
k 6=i

xikukj =
∑
i<k≤j

xikukj

where j − k < j − i. By applying the induction hypothesis on ukj we have

(αj − αi)uij

=
∑
i<k≤j

xik

j−1∏
p=k

xp,p+1

αj − αp
+ ...

= xi,i+1

j−1∏
p=i+1

xp,p+1

αj − αp
+ ...

Here we omit the terms of degree less than j − i. This completes the proof
of the proposition. �

Lemma 11.4. For any 1 ≤ l ≤ n and 1 ≤ i1 < i2 < · · · < il ≤ n we have

c(i1, i2, . . . , il) := det

(
qk−1(αij )

qij−1(αij )

)
1≤k≤l,1≤j≤l

6= 0.

Proof. By algebraic manipulations, we can rewrite the determinant above
as

l∏
j=1

1

qij−1(αij )


1 1 · · · 1

q1(αi1) q1(αi2) · · · q1(αil)
...

... · · ·
...

ql−1(αi1) ql−1(αi2) · · · ql−1(αil)

 .

Since deg qi = i, by row reductions we have

det


1 1 · · · 1

q1(αi1) q1(αi2) · · · q1(αil)
...

... · · ·
...

ql−1(αi1) ql−1(αi2) · · · ql−1(αil)



= det


1 1 · · · 1
αi1 αi2 · · · αil
...

... · · ·
...

αl−1
i1

αl−1
i2

· · · αl−1
il

 6= 0.

�

Proposition 11.5. For any h ∈ N (recall Ad(h)Mα = (xij)), we have

h(ei1 ∧ ei2 ∧ · · · ∧ eil)
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= c(i1, i2, . . . , il)

l∏
j=1

ij−1∏
p=j

xp,p+1(e1 ∧ e2 ∧ · · · ∧ el) + ...

Here c(i1, i2, . . . , il) is the number in Lemma 11.4 and we omit the terms of

polynomials in variables xpq (p < q) of degrees smaller than
∑l

j=1(ij − j).

Proof. By Lemma 11.3, we know that uij is a polynomial of degree j − i.
This implies that the term in h(ei1 ∧ ei2 ∧ · · · ∧ eil) corresponding to the
ej1∧ej2∧· · ·∧ejl-coordinate has degree at most i1+i2+· · ·+il−j1−j2−· · ·−jl.
To prove the proposition, it suffices to prove that the term corresponding to
e1 ∧ e2 ∧ · · · ∧ el is a polynomial with its leading term

c(i1, i2, . . . , il)
l∏

j=1

ij−1∏
p=j

xp,p+1

of degree i1 + i2 + · · ·+ il − 1− 2− · · · − l.
We know that the coefficient of e1 ∧ e2 ∧ · · · ∧ el is equal to

det(uk,ij )1≤k≤l,1≤j≤l

and by Lemma 11.3 we know that the leading term of this coefficient is equal
to

det

 qk−1(αij )

qij−1(αij )

ij−1∏
p=k

xp,p+1


1≤k≤l,1≤j≤l

.

The expansion formula of determinant then gives∑
σ∈Sl

(−1)sign(σ)
l∏

j=1

qσ(j)−1(αij )

qij−1(αij )

ij−1∏
p=σ(j)

xp,p+1

where σ runs over all the permutations in the symmetric group Sl. Note
that we have

l∏
j=1

ij−1∏
p=σ(j)

xp,p+1 =
l∏

j=1

∏ij−1
p=1 xp,p+1∏σ(j)−1
p=1 xp,p+1

=

∏l
j=1

∏ij−1
p=1 xp,p+1∏l

j=1

∏j−1
p=1 xp,p+1

=
l∏

j=1

ij−1∏
p=j

xp,p+1.

This implies that

det

 qk−1(αij )

qij−1(αij )

ij−1∏
p=k

xp,p+1


1≤k≤l,1≤j≤l

=

∑
σ∈Sl

(−1)sign(σ)
l∏

j=1

qσ(j)−1(αij )

qij−1(αij )

 l∏
j=1

ij−1∏
p=j

xp,p+1
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= c(i1, i2, . . . , il)

l∏
j=1

ij−1∏
p=j

xp,p+1

where c(i1, i2, . . . , il) is the number as in Lemma 11.4. �

We define the regions

N(T ) = {h ∈ N : Ad(h)Mα = (xij) ∈ BT }

N(ε, T ) = {h ∈ N : Ad(h)Mα ∈ BT , |xi,i+1| ≥ εT}.

Lemma 11.6. We have

µN (N(T )) =
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2

µN (N \N(ε, T )) = O(εTn(n−1)/2).

Here µN denotes the Haar measure on N .

Proof. This follows immediately from Lemma 11.2. �

In the following, we compute the volume Vol(V (R) ∩ BT ) with respect
to the volume form dµV (R) on V (R) induced by the G-invariant measure on
G/A. (G = SL(n,R)) By Iwasawa decomposition, one has

V (R) ∼= G/A ∼= KN

and it is well-known that for any f ∈ Cc(G/A)∫
G/A

fdµV (R) =

∫
K

∫
N
f(kh)dµK(k)dµN (h)

via this isomorphism.

Proposition 11.7. We have

Vol(V (R) ∩BT ) =
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2.

Proof. Note that by the remark above, one has

µV (R)(V (R) ∩BT ) = µK × µN ({kh : Ad(kh)Mα ∈ BT }).

By Lemma 11.6 and the Ad(K)-invariance of the norm on M(n,R), we
compute

µK × µN ({kh : Ad(kh)Mα ∈ BT })
=µN ({h : Ad(h)Mα ∈ BT })

=
Vol(B1)∏
j>i |αj − αi|

Tn(n−1)/2.

This completes the proof of the proposition. �
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Proposition 11.8. For any k ∈ K and h ∈ N(T ) we have

Vol(Ωkh,δ) = O((lnT )n−1)

where the implicit constant depends only on δ and Mα. Furthermore, for
h ∈ N(ε, T ) we have

Vol(Ωkh,δ) = (c0 + o(1))(lnT )n−1

where the implicit constant depends on ε, δ,Mα, and c0 equals the volume oft ∈ Lie(A) :
l∑

j=1

tij ≥
l∑

j=1

(j − ij),∀1 ≤ l ≤ n,∀i1 < · · · < il

 .

Proof. From the definition of Ωkh,δ, we know that

Ωkh,δ = {t ∈ Lie(A) :
l∑

j=1

tij ≥ ln δ − ln ‖kheI‖ for any nonempty I ∈ In}.

Since k ∈ SO(n,R), by Proposition 11.5, for any i1 < i2 < · · · < il we have

ln δ − ln ‖kh(ei1 ∧ ei2 ∧ · · · ∧ eil)‖
≥ O(1)− (i1 + i2 + · · ·+ il − 1− 2− · · · − l)(lnT )

where the implicit constant depends only on δ and Mα. Moreover if h ∈
N(ε, T ) then we have

ln δ − ln ‖kh(ei1 ∧ ei2 ∧ · · · ∧ eil)‖
= O(1)− (i1 + i2 + · · ·+ il − 1− 2− · · · − l)(lnT )

where the implicit constant depends only on ε, δ and Mα. The proposition
now follows from these equations. �

Define

FT (g) =
∑

γ∈Γ/ΓMα

χT (Ad(gγ)Mα)

where χT is the characteristic function of BT in M(n,R) and ΓMα is the
stabilizer of Mα in Γ = SL(n,Z). This defines a function on G/Γ. Note that
χT is Ad(K)-invariant and ΓMα is finite. In the following proposition, we
will denote by

(f, φ) :=

∫
G/Γ

f(g)φ(g)dµG/Γ(g)

for any two functions f, φ on G/Γ, whenever this integral is valid. We will
also write µH for the Haar measure of a subgroup H in G

Proposition 11.9. For any ψ ∈ Cc(G/Γ), we have(
|ΓMα |

n0Tn(n−1)/2(lnT )n−1
FT , ψ

)
→ (1, ψ).
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Here

n0 =
c0 Vol(B1)∏
j>i |αj − αi|

and c0 is the number as in Proposition 11.8.

Proof. We have

(FT , ψ) =
1

|ΓMα |

∫
G/Γ

∑
γ∈Γ

χT (Ad(gγ)Mα)ψ(g)dmX

=
1

|ΓMα |

∫
G
χT (Ad(g)Mα)ψ(g)dµG(g)

=
1

|ΓMα |

∫
KN

∫
A
χT (Ad(kha)Mα)ψ(kha)dµKdµNdµA

=
1

|ΓMα |

∫
K

∫
N
χT (Ad(h)Mα)dµNdµK

∫
A
ψ(kha)dµA.

Now fix ε > 0 and by Corollary 10.1, we proceed

=
1

|ΓMα |

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ)dµNdµK
1

Vol(Ωkh,δ)

∫
A
ψ(kha)dµA

+
1

|ΓMα |

∫
K

∫
N\N(ε,T )

χT (Ad(h)Mα)dµNdµK

∫
A
ψ(kha)dµA

=
1

|ΓMα |

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ)dµNdµK

(∫
G/Γ

ψdmX + oε(1)

)

+
1

|ΓMα |

∫
K

∫
N\N(ε,T )

χT (Ad(h)Mα)dµNdµK

∫
A
ψ(kha)dµA.

Note that since ψ ∈ Cc(G/Γ) we can find δψ > 0 such that∫
A
ψ(kha)dµA =

∫
Ωkh,δψ

ψ(kha)dµA.

So by Lemma 11.6 and Proposition 11.8, we proceed

=
1

|ΓMα |

∫
K

∫
N(ε,T )

χT (Ad(h)Mα) Vol(Ωkh,δ)dµNdµK

∫
G/Γ

ψdmX

+oε(T
n(n−1)/2(lnT )n−1) +Oψ(εTn(n−1)/2(lnT )n−1)

=
n0T

n(n−1)/2(lnT )n−1

|ΓMα |

∫
G/Γ

ψdmX

+oε,δ(T
n(n−1)/2(lnT )n−1) +Oψ(εTn(n−1)/2(lnT )n−1).

This implies that

lim sup
T→∞

∣∣∣∣( |ΓMα |
n0Tn(n−1)/2(lnT )n−1

FT , ψ

)
− (1, ψ)

∣∣∣∣ ≤ Oψ(ε).

We complete the proof by letting ε→ 0.
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�

Proof of Theorem 2.9. We follow the same proofs as in [DRS93] and [EMS96],
and by combing Lemma 11.6 and Proposition 11.9, we conclude that

|ΓMα |
n0Tn(n−1)/2(lnT )n−1

FT → 1.

Now Theorem 2.9 follows from this equation and Proposition 11.1 �
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Sankhyā Ser. A 62 (2000), no. 3, 386–412. Ergodic theory and harmonic anal-
ysis (Mumbai, 1999). MR1803465

[Sha91] N. A. Shah, Uniformly distributed orbits of certain flows on homogeneous
spaces, Math. Ann. 289 (1991), no. 2, 315–334. MR1092178

[Sha] U. Shapira, Full escape of mass for the diagonal group, to appear in Int. Math.
Res. Not.

[TW03] G. Tomanov and B. Weiss, Closed orbits for actions of maximal tori on homo-
geneous spaces, Duke Math. J. 119 (2003), no. 2, 367–392. MR1997950

Department of Mathematics, Technion, Haifa, Israel
E-mail address: ushapira@tx.technion.ac.il

E-mail address: cheng.zheng@tx.technion.ac.il


	1. Introduction
	2. Basic definitions and results
	2.1. Topologies
	2.2. Main results
	2.3. Applications

	3. Topology on PM(X)
	4. Convex polytopes
	5. Auxiliary results in graph theory
	6. Revisit convex polytopes
	7. Nondivergence
	8. Nondivergence in terms of adjoint representations
	9. Ratner's theorem and linearization
	9.1. Prerequisites
	9.2. Proof of Proposition 9.9

	10. Proofs of Theorem 2.4 and Theorem 2.5
	11. An application to counting problem
	References

