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We study the collection of points on the modular surface obtained from the logarithm

embeddings of the groups of units in totally real cubic number fields (which we term

Dirichlet shapes of unit lattices). We conjecture that this set is dense and show that its

closure contains countably many explicit curves and give a strategy to show that it has

non-empty interior. The results are obtained by constructing explicit families of orders

(generalizing the so called “simplest cubic fields") and calculating their groups of units.

We also address the question of escape of mass for the compact orbits of the diagonal

group associated to these orders.

1 Introduction

This article originates from an attempt to understand concrete examples of sequences

of compact orbits for the diagonal group A < SL3(R) on the space of lattices X
def=

SL3(R)/SL3(Z). We investigate two seemingly unrelated questions one can ask about

such orbits. The first deals with a certain number theoretic invariant of a compact

A-orbit (the shape of the unit lattice attached to it), and the second deals with the dis-

tribution of the orbit in X . While we do not see any obvious connection between the

two questions, this article is concerned with constructing families of lattices in X for
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which both of these questions can be answered. Nevertheless, see the last paragraph

of section 1.2 and Remark 2.12 for a heuristics regarding why we expect that when one

exhibits a construction for the first question the second question is likely to be answered

as well.

1.1 Dirichlet shapes of unit lattices

We begin by explaining the first question which we find most interesting and seems to

deserve further study. It is well known (see section 2) that given an order O in a totally

real cubic number field, one can construct out of it a three-dimensional lattice with a

compact A-orbit whose geometric shape is governed by the shape of the group of units

O×.

More precisely, let {σi}31 denote the embeddings of the field into the

reals. Dirichlet’s unit theorem states that if we denote for ω ∈ O×, ψ(ω) def=
(log |σ1(ω)|, log |σ2(ω)|, log |σ3(ω)|), then ψ maps O× to a two-dimensional lattice in the

plane R3
0

def=
{
t ∈ R3 :

∑3
1 ti = 0

}
. We define the Dirichlet shape �O× of the unit lattice

O× to be the corresponding point on the modular curve SL2(Z)\H. This correspon-

dence is defined as follows: one chooses a similarity map to identify R3
0 and R2 which

maps ψ(O×) to a unimodular lattice in R2, that is, to a point in SL2(R)/SL2(Z). Since

the similarity is only well-defined up to rotation, we obtain a well-defined point in

SO2(R)\SL2(R)/SL2(Z) � SL2(Z)\H. We set

�
def= {�O× ∈ SL2(Z)\H : O is an order in a totally real cubic number field} .

We wish to propose the following conjectures.

Conjecture 1.1. (1) The closure � in the modular surface is non-compact.

(2) The closure � in the modular surface has non-empty interior.

(3) The set � is dense in the modular surface. �

Despite the fact that the above conjectures are natural, as far as we know there is

virtually nothing in the literature about them. In personal communication with Andre

Reznikov we learned that questions which are similar in spirit to the above were also

suggested by Margulis and Gromov and that numerical experiments seem to support

Conjecture 1.1. We provide modest progress toward Conjecture 1.1((2)) and prove that

� contains countably many explicit curves illustrated in Figure 1. For more details see

Theorem 1.4. In Figure 2, we plotted the Dirichlet shapes of the unit lattices of rings of

integers of totally real fields with bounded discriminants.
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Fig. 1. The dashed curves are cluster points of Dirichlet shapes of rings of the form Z [θ ], where θ

is a unit, which we construct. The thick curve in the middle is (one of the countably many) limits

of the dashed curves.

Fig. 2. Above are sage plots of Dirichlet shapes of the unit lattices of rings of integers of totally

real fields with discriminant bounded from above by 10, 000, 20, 000, and 50, 000, respectively.
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In Problem 1.5 we give a strategy of how to reduce Conjecture 1.1((2)) to a certain

problem in finding enough solutions to some congruence conditions.

1.2 Escape of mass

We now describe the second question we study. One of the major open questions in

homogeneous dynamics is to understand the space of A-invariant and ergodic proba-

bility measures on X . Conjecturally, this space is composed of periodic measures only.

Here, a probability measure is called periodic if it is L-invariant and supported on a

single orbit Lx ⊂ X , where L < SL3(R) is a closed subgroup. In such a case we denote

this measure by μLx and say that the orbit Lx is a periodic orbit. In fact, in the above

example, due to scarcity of closed groups A < L < SL3(R), the A-invariant and ergodic

periodic measures in this space are μX — the unique SL3(R)-invariant probability mea-

sure on X — and the ones corresponding to periodic A-orbits (which is a synonym for

compactA-orbits). Apart fromdescribingwhat are theA-invariant and ergodic probabil-

ity measures on X , it is desirable to understand the topology of this space. In particular,

what can be said about the weak* accumulation points of sequences μAxn of periodic

A-invariant measures supported on compact A-orbits. The question that we study for

a sequence μAxn is that of partial or full escape of mass. We say that a sequence μAxn

exhibits c-escape of mass for 0 < c ≤ 1 if any weak∗ accumulation point μ of μAxn sat-

isfies μ(X) ≤ 1 − c. We say that it exhibits full escape of mass if it exhibits 1-escape of

mass, that is, if μAxn converges to the zero measure.

The reason for the number theoretic interest in periodic A-orbits is that they

correspond to full modules in totally real cubic number fields as will be discussed later.

Our aim in this direction is to review and construct particular examples of such full

modules and establish partial or full escape of mass of the corresponding orbits. In

practice, what we do is exhibit a family of cubic polynomials {fi(x) : i ∈ I} ⊂ Z[x] which

depend on some parameter i ∈ I (such that fi(x) is irreducible and totally real) and

discuss the periodic A-orbit corresponding to the order Z[θi], where θi is a root of fi(x),

as the parameter varies. One might expect that if the polynomials are chosen carefully,

then conclusions regarding the orbits could be derived.

The fact that these orders contain 1 implies in turn that the corresponding A-

orbit contains a point “close to infinity" (because we normalize by the discriminant).

When this is coupled with the fact that these orbits are in some sense “small" we obtain

the desired escape of mass. See Remark 2.12 for a heuristic reason regarding why one

can explicitly construct only “small" orbits.
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1.3 Structure of the paper and results

In section 2 we give the general notation and correspondence between full modules of

general orders in number fields and periodic A-orbits in X . In particular, we will give

a condition on the relation between the discriminant and the unit group that will be

sufficient to produce escape of mass.

As stated before, we are interested in lattices arising from rings of the form Z[θ ],
where θ is the root of some monic irreducible polynomial f (x). In particular, we will

be interested in the case where the units of Z[θ ] are generated by elements of the form

aθ − b, cθ − d (and −1).

We start this investigation in section 3 and show in Lemma 3.1 that a necessary

condition for aθ −b, cθ −d to be units in Z[θ ] is that a3f ( ba ) = ±1 and similarly c3f (dc ) =
±1, which is a solution to two integral equations in the coefficients of f .

In sections 3.2 and 3.3 we will show how to construct monic cubic polynomials

fa,b,c,d,t (x) (all parameters being integers) which satisfy these conditions. Moreover, we

will show that there are infinitelymany such polynomials (parameterized by t) whenever

a,b, c,d satisfy a simple congruence conditions, andwewill give some examples for such

a,b, c,d.

In section 3.4, we fix the parameters a,b, c,d and take |t| → ∞. In this case,

for |t| big enough, the polynomials fa,b,c,d,t(x) will be irreducible and not only will the

elements aθ−b, cθ−d be integral units, they will actually form a system of fundamental

units (i.e., they generate the unit group together with −1). More precisely, we have the

following result which is a direct consequence of Theorems 3.12 and 3.13.

Theorem 1.2. Fix a,b, c,d ∈ Z such that a, c 	= 0, b
a 	= d

c , a 	= ±c, and there exists a

monic cubic polynomial h(x) ∈ Z[x] satisfying a3h
(
b
a

) = ε1, c3h
(
d
c

) = ε2, where εi = ±1.

We denote ht(x) = h(x)+ tg(x), g(x) = (ax − b) (cx − d), where t ∈ Z. Then the following

holds

(1) For all |t| big enough, the polynomial ht (x) is totally real and irreducible.

(2) Setting θt to be a root for ht, for all |t| big enough the unit group of Z[θt] is
generated by {aθt − b, cθt − d,−1}.

(3) As |t| → ∞ the Dirichlet shape of the unit lattice converges to the regular

triangles lattice.

(4) As |t| → ∞, the orbits corresponding to the orders Z[θt] exhibit full escape
of mass. �
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We remark two things: (1) What stands behind Theorem 1.2 is that the family

of polynomials ht is controlled by a degree 2 polynomial g, and as |t| increases, we can

approximate the roots of ht using the roots of g. (2) As mentioned above, the existence

of a polynomial h used to jumpstart Theorem 1.2 is guaranteed by a simple congruence

condition on the parameters a,b, c,d.

The phenomena described in Theorem 1.2 are similar in nature to what happens

in [10] and in particular, the shape of the regular triangle lattice is the only possible

limit shape. It turns out that in order to create new limit shapes one needs to vary

the parameters a,b, c,d with t. This approach is implemented in section 3.5. In fact, to

simplify matters we concentrate on the case where c = 1,d = 0 (i.e., that θ is an integral

unit), and take a := at,b := bt to increase to infinity as |t| → ∞. As mentioned earlier, in

order to construct the relevant polynomial for such at,bt they need to satisfy a simple

congruence condition which we now define.

Definition 1.3. We say that a pair of integers (a,b) is a mutually cubic root pair if

a3 ≡b 1 and b3 ≡a 1 , that is, a | b3 − 1 and b | a3 − 1. A sequence (at,bt) is called

a mutually cubic root sequence if (at,bt) is a mutually cubic root pair for any t ∈ N

or Z. �

Given a mutually cubic root sequence, we are able to construct a family of orbits

which exhibit (at least) partial escape of mass. Furthermore, we will also compute the

Dirichlet shapes of the unit lattices and their limit as |t| → ∞. Unlike the case with

a,b, c,d fixed, here the limit Dirichlet shapeswill not necessarily be the regular triangles

lattice.

Theorem 1.4. Let (at,bt) be amutually cubic root sequence and suppose that the limits

ã = lim
t→∞

log|at|
log|t| and b̃ = lim

t→∞
log|bt|
log|t| exist and satisfy 0 ≤ ã ≤ b̃. Then � ⊆ SL2(Z)\H contains

the image of the curve

γ (r) =
1 + 2rã+

(
1 + rb̃+ 2rã

)
ω

1 + rã+
(
rã− rb̃

)
ω

r ∈
[
0,min(

1

3ã
,
1

b̃
)

]
,

where ω = e
2π i
3 . �

Wenote that the ratios ã
b̃

= lim
t→∞

log|at|
log|bt| (thought of as points in P1(R)) and the curves

are in 1-1 correspondence. In section 3.6, we will show how to produce infinitely many

examples of mutually cubic root sequences (at,bt), which in turn produce countably
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many distinct limits of the form lim
t→∞

log|at|
log|bt| . The Dirichlet shape of unit lattices produced

by these orders can be seen in Figure 1. As a consequence to the previous theorem, it

is straightforward to see that a positive solution to the following problem will imply

Conjecture 1.1((2)).

Problem 1.5. Let � ⊂ P(R) be the set of all the possible ratios ã
b̃
, where ã = lim logat

log t ,

b̃ = lim log bt
log t (not both zero), and (at,bt) is a mutually cubic root sequence. Is the interior

of � non-empty? �

We remark that in Corollary 3.27 we show that � has infinitely many accumula-

tion points.

1.4 Comparison with earlier results

This work is a succession of the discussion in [10] in which the second named author

addressed the above questions in regards to certain sequences of compact A-orbits (in

any dimension). In that discussion, all sequences of compact A-orbits exhibited full

escape of mass but more interestingly, the Dirichlet shapes of unit lattices there con-

verged to a fixed shape which in dimension 3 is the shape of the regular triangle lattice

which corresponds to the point ω = exp( 2π i3 ) on the corner of the fundamental domain

in Figure 1. Interestingly, in the present work, when we produce examples of orders for

which the Dirichlet shapes of unit lattices converge to a shape not equal to ω we only

manage to establish partial escape of mass.

The problem of finding generators for the group of units O× is classical. Explicit

examples of computations may be found in [4, 7, 8, 12], and most notably in the spirit

of the current discussion, in [2] where it is shown that the curve at the bottom of the

fundamental domain in Figure 1, e2π iθ , θ ∈ [π/3, 2π/3] is contained in �.

2 Preliminaries

Wenow set up the number theoretic notation and terminology needed for our discussion.

For the general background from number theory, see for example [9].

Let K/Q be a totally real number field of degree n. A full module M in K is an

abelian subgroup M = spZ {α1, ...,αn} ≤ K such that QM = K. An order in K is a full

module which is also a unital ring. We denote by OK the ring of integers which is the

unique maximal order in K. Let σ1, ..., σn : K → R be the n distinct real embeddings of

K. The homomorphism ϕ : K → Rn defined by ϕ(α) := (σi(α))
n
1 is an embedding which
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sends any full-module M < K to a lattice in Rn. The discriminant DM of M is defined

as the square of the covolume of ϕ(M). We denote by DK the discriminant of of the

ring of integers OK. Given a full module M , we define the associated order of M to be

OM := {α ∈ K | αM ⊆ M} and denote by O×
M the group of units of OM . Note that M is

itself an order if and only if M = OM . Let ψ : K → Rn be defined by ψ(α) = (log |σi(α)|)n1 .
Since the norm of a unit is ±1, ψ(O×

M ) ⊂ Rn
0 := {

x ∈ Rn :
∑n

1 xi = 0
}
. Dirichlet’s unit

theorem says that ψ(O×
M ) is a lattice in Rn

0 . A collection
{
αj
}n−1

1
⊂ O×

M is a system of

fundamental units if
{
ψ(αj)

}n−1

1
forms a basis for ψ(O×

M ). The Regulator RM of M is

defined as the covolume of the projection of ψ(O×
M ) into any copy of Rn−1 spanned by the

axis in Rn. Equivalently, if
{
αj
}n−1

1
≤ O×

M is a system of fundamental units then RM is

the determinant of any (n− 1)× (n− 1) submatrix of of the matrix
(
log

∣∣σi (αj)∣∣), where

1 ≤ i ≤ n and 1 ≤ j ≤ n−1. If
{
αj
}n−1

1
is just a set of independent units, we shall call this

determinant the relative regulator.

We now restrict our attention to orders in totally real cubic fields. The following

theorem and its corollary will give us the tool to prove that a pair of units is a system

of fundamental units. This was used also in [2].

Theorem 2.1 (Cusick [1]). For an order in a totally real cubic number field of

discriminant D and regulator R, one has R

log2
(
D
4

) ≥ 1
16 . In particular, for any

sequence of such orders with discriminants and regulators Di,Ri respectively, we have

lim inf
i→∞

Ri
log2(Di)

≥ 1
16 . �

We remark that the formulation of this result in [1] is for maximal orders but

that the proof works verbatim for a general order.

Corollary 2.2. Let K be a totally real cubic field, and let M ≤ K be an order with

discriminant D and regulator R. If {α1,α2} ≤ M× is an independent set of units with

relative regulator R′ such that R′
log2

(
D
4

) < 1
8 , then they must be a fundamental set. �

Proof. Follows immediately from the previous theorem and the fact that R′/R = [OK :

〈α1,α2,−1〉]. �

We briefly describe the relation between full modules and compact A-orbits in

the space of lattices. The space of unimodular lattices is identified as usual with X :=
SLn(R)/SLn(Z) and we denote by A ≤ SLn(R) the subgroup of positive diagonal matrices.
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Given a full module M in a totally real degree n number field K with embeddings {σi}n1 ,
we denote LM := D

− 1
2n

M ϕ(M) ∈ X . The compactness of the orbit ALM is a consequence of

Dirichlet’s theorem as we now explain. This compactness is equivalent to the statement

that stabR
n
0
(LM ) :=

{
x ∈ Rn

0 : exp(x)LM = LM
}
is a lattice in Rn

0 , where here exp : Rn
0 → A

is given by exp(x) := diag (ex1 , . . . , exn). It is straightforward that for α ∈ K×, LαM = aαLM

where aα := diag (σ1(α), . . . , σn(α)) on the diagonal. Therefore, if α ∈ O×
M then aαLM = LM

and detaα = ±1 (because α has norm ±1). If all the values of σi(α) are positive then

ψ(α) ∈ stabR
n
0
(LM ). In fact, the converse is also true (see [3, 5, 6, 11]),that is, if we set

O×,+
M := {

α ∈ O×
M : ∀i, σi(α) > 0

}
, then

ψ(O×,+
M ) = stabR

n
0
(LM ).

Now since ψ(O×,+
M ) is a finite index subgroup of ψ(O×

M ), and the latter is a lattice in Rn
0

by Dirichlet’s theorem, we conclude that ψ(O×,+
M ) is a lattice as well.

Remark 2.3. We note two things. First, it is a classical fact (that we will not use), that

all compact A-orbits are of the form ALM for some full module M as above (see any of

[3, 5, 6, 11]). Second, although when studying the orbit ALM , the lattice ψ(O×,+
M ) is a more

natural object of study, it is much more natural from the number theoretic point of view

to work with the lattice ψ(O×
M ). In Corollary 2.6 we will show that for the purpose of

escape of mass, passing from ψ(O×,+
M ) to ψ(O×

M ) is harmless. �

We turn now to present the necessary tools to establish the escape of mass in

our results. For a more thorough discussion, the reader is referred to [10].

Definition 2.4. Let L ∈ X be a unimodular lattice.

(1) We define the height of L to be

ht(L) = (min {||v|| | 0 	= v ∈ L})−1 = max
{||v||−1 | 0 	= v ∈ L

}
.

(2) For H ≥ 0 we define X≤H (respectively, <,≥,>) by

X≤H = {L ∈ X | ht(L) ≤ H} . �

The sets X≤H are compact and X = ⋃
H X

≤H . The statement that a sequence of periodic

A-orbits Axk exhibits c-escape of mass for 0 < c ≤ 1 is equivalent to the statement that

for any H > 0, ε > 0 and any k large enough μAxk (X
≥H ) ≥ c − ε.
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The minor difference between ψ(O×,+
M ) and ψ(O×

M ) does not play any role in the

discussion of escape of mass because of the following.

Lemma 2.5. Let M be a full module in a totally real number field as above. The height

map h : Rn
0/ψ(O×,+

M ) → R given by h(x) := ht(exp(x)LM ) factors through Rn
0/ψ(O×

M ). �

Proof. if x,y ∈ Rn
0 are such that x − y ∈ ψ(O×

M ) then there exists α ∈ O×
M and a diagonal

±1matrix Jα such that exp(x−y) = Jαaα. Since Jα acts as an isometry onRn andaαLM = LM

we get that

h(x) = ht(exp(x)LM ) = ht(exp(y) exp(x − y)LM )

= ht(exp(y)JαaαLM ) = ht(Jα exp(y)LM ) = ht(exp(y)LM ) = h(y). �

Corollary 2.6. Let ALM be a compact A-orbit as above, let F be a fundamental domain

for ψ(O×
M ) in Rn

0 , let λ denote the Lebesgue measure on Rn
0 and let μALM be the peri-

odic A-invariant probability measure on the orbit ALM . Let h : Rn
0 → R be the

height function h(x) := ht(exp(x)LM ). Then, for any H > 0 we have μALM (X
>H ) = 1

λ(F)

λ({x ∈ F : h(x) > H}). �

In practice, the way we prove escape of mass is by using the above corollary: We

find a good fundamental domain for the unit lattice ψ(O×
M ) on most of which we have

control on the height.

Henceforth we restrict our discussion to dimension n = 3. We now explain how

to we choose good fundamental domains for ψ(O×
M ) in which we control the height in a

good enough manner. We need to introduce a few definitions first.

Definition 2.7. A set � = {α1,α2,α3} ⊆ R3
0 is called a simplex set if spanR� = R3

0 and∑3
1 αi = 0.

Denote by �� = spanZ {�} the lattice generated by � and by W� the set

W� =
{

3∑
1

λiαi | {λ1, λ2, λ3} =
{
0,

1

3
,
2

3

}}
. �

Since any simplex set � is a linear image of the simplex set giving rise to the regular

triangle lattice, we conclude from Figure 3 that conv (W�) is a fundamental domain for

the lattice ��.
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Fig. 3. The inner hexagon with dashed lines, which equals conv(W�), is a fundamental domain

for the regular triangles lattice generated by � = {α,α′,α′′}. The six points W� are its vertices.

Definition 2.8. For a vector v = (
v(1),v(2),v(3)

) ∈ R3
0 we write �v� = max v(i). For a set �̃

we denote
⌈
�̃
⌉

= max
v∈�̃

�v�. �

Lemma 2.9. Let �i be a sequence of simplex sets such that �i ⊂ ψ(O×
i ), where Oi is a

sequence of distinct orders in totally real cubic fields. Then, �W�i
� → ∞. �

Proof. It is not hard to show that if the covolume of the lattice �� goes to ∞ then

so does �W��. The lemma now follows because the covolume of ��i
is proportional to

the regulator ROi
and it is well known that there are only finitely many orders with

regulators under a given bound, the lemma follows. �

In Theorem 2.11 below we see that the term �W�� controls the escape of mass.

Before stating this theorem we need the following.

Definition 2.10. Let M be a full module in a totally real cubic number field. We say

that a simplex set � ⊆ ψ(O×
M ) is (R, r)-tight for R ≥ 1 and 0 ≤ r ≤ 1 if exp (r �W��) ≤

ht (LM )R. �

Theorem 2.11. Let R, r > 0 be fixed. LetMi be a sequence of full modules in totally real

cubic number fields with distinct associated orders Oi. Let �i ⊆ ψ(O×
i ) be simplex sets
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which are (R, r)-tight. Then the sequence of periodic A-orbits ALMi
exhibits r2-escape of

mass. �

Proof. Consider the height function h : conv(W�i
) → R given by h(x) = ht(exp(x)LMi

).

We show that for any H > 0, any r0 < r, and any large enough i, r0 · conv(W�i
) ⊂{

x ∈ conv(W�i
) : h(x) > H

}
and so, by Corollary 2.6, since r20 = λ(r0·conv(W�i ))

λ(conv(W�i
))

, the sequence

exhibits r2-escape of mass as claimed.

To this end, fix H > 0, r0 < r, and let x ∈ r0 · conv (W�i

) ⊆ R3
0 for some 0 ≤ r0 < r

and write x =
∑
β∈W�i

λββ as a convex combination. For 0 	= v ∈ LMi
of norm ht(LMi

)−1 we

get that

|| exp (x)v|| ≤ ||v||max
1≤�≤3

(exp (x�)) ≤ ||v||max
�
(exp(

∑
β∈W�i

λββ
(�)))r0

≤ ||v|| (exp ⌈W�i

⌉)r0 ≤ R
(
exp

⌈
W�i

⌉)r0−r
.

It follows that for x ∈ r0 · conv(W�i
), h(x) > R−1(�W�i

�)r−r0 and the latter expression is

greater than H for i large enough since
⌈
W�i

⌉ → ∞ by Lemma 2.9. �

Remark 2.12. As explained to us by Elon Lindenstrauss we remark here that the three-

dimensional lattices that we build here have very small A-orbits in the following sense:

The volume of the orbit is (up to a constant) the regulator and by the class number

formula the biggest the regulator can get is roughly square root of the discriminant. On

the other hand, if one can express explicitly a fundamental set of units of an order Z[θ ],
where θ has f as minimal polynomial, then it is very likely (and indeed happens in our

analysis), that the units in this fundamental set would be polynomial expressions in the

roots of f and thus the regulator would be a logarithmic expression in the roots of f .

In turn, the discriminant is polynomial in the roots of f and therefore the regulator is

logarithmic in the discriminant. This might serve as a heuristics for why in any explicit

construction of sequences of orders in which we are able to exhibit a fundamental set

of units we also observe some escape of mass. �

3 Construction of Cubic Orders

3.1 Generalizing the simplest cubic fields

Tomotivate the constructions presented below we begin by reviewing a classical family

of cubic fields. These are known as the simplest cubic fields. They get their name from

the ease in the computation of their integer ring, integral units, and other important
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algebraic invariants. This example was used by Cusick in [1] to show that the limit

lim
i→∞

Ri
log2(Di)

= 1
16 in Theorem 2.1 can be attained. This family consists of the fields

Kt = Q(θt) for 0 ≤ t ∈ Z, t 	≡9 3, where θt is a root of the polynomial

ft(x) = x3 − tx2 − (t + 3)x − 1 = (
x3 − 3x − 1

)− t · x (x + 1) .

It is well known that for infinitely many t we have that OKt = Z [θt] , and the unit group

is generated by −1, θt, θt + 1 (see e.g., [13]). The fact that these are indeed units is easy

to see from the polynomials ft. The norm of θt is just the free coefficient of ft, namely

ft(0) = −1, so that θt is an integral unit. The norm of θt + 1 is the free coefficient of

ft(x− 1), namely it is ft(−1) = (−1)3 + 3− 1 = 1 so it is again a unit. Note that the norms

are independent of t, since 0,−1 are roots of x(x + 1).

With this idea, we construct below polynomials fa,b,c,d,t(x) giving rise to orders

of the form Z [θ ] such that their unit group is generated by aθ − b, cθ − d, and −1 (for

t large enough). These types of orders were studied in [4, 8, 12] with some restrictions on

a,b, c,d and in greater generality in [7], though with a rather complex set of conditions

on a,b, c,d. We will give a simple congruence condition on a,b, c,d that will ensure that

the group of units is indeed generated by the above, and furthermore, in section 3.6 we

will show how to construct infinitely many tuples (a,b, c,d) which satisfy our congru-

ence conditions.

Given a,b, c,d ∈ Z which satisfy some mild conditions, we classify the family of

polynomials f (x) ∈ Z[x] having a root θ such that aθ −b, cθ −d are units in the ring Z[θ ].

Lemma 3.1. Let f (x) ∈ Z [x] be a monic, cubic irreducible polynomial with root θ . Then

for a,b ∈ Z, a 	= 0 we have that N(aθ − b) = −a3f ( ba ). In particular, aθ − b is a unit

in Z [θ ] if and only if a3f ( ba ) = ±1. Additionally, if this is the case we must have that

gcd (a,b) = 1. �

Proof. We recall that aθ − b is a unit if and only if N(aθ − b) = ±1 and this norm is

minus the free coefficient of the monic minimal polynomial of aθ − b which is a3f
(
x+b
a

)
.

It follows that aθ − b is a unit if and only if ±1 = −N(aθ − b) = a3f
(
b
a

)
.

A necessary condition is that (a,b) = 1. Indeed, if a = a′d and b = b′dwith d > 1,

then

N(aθ − b) = N(d · (a′θ − b′)) = d3N(a′θ − b′) 	= ±1,

and therefore aθ − b is not a unit. �
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Remark 3.2. Clearly, we have that N(aθ − b) = −N(−aθ + b) in cubic extensions, and

furthermore multiplying by −1 elements from a system of fundamental units will pro-

duce a system of fundamental units. Thus, when searching for units we will always

assume that the norm is -1, and in the notation of the previous lemma we have that

a3f ( ba ) = 1. �

Lemma 3.3. Let a,b, c,d ∈ Z be given and assume that a, c 	= 0, ad − bc 	= 0 and that

gcd(a,b) = gcd(c,d) = 1. Let

F = Fa,b,c,d =

⎧⎪⎪⎨
⎪⎪⎩h ∈ Z [x] :

h is a monic cubic irreducible polynomial with root

θ such that both aθ − b and cθ − d are units

in Z[θ ] of norm -1

⎫⎪⎪⎬
⎪⎪⎭ .

Then h ∈ F implies that F ⊆ {ht(x) = h(x)+ t (ax − b) (cx − d) : t ∈ Z}. �

Proof. If f ∈ F , then f (x)− h(x) is a degree 2 polynomial (since both are monic). Also,

fromLemma 3.1we conclude that b
a ,

d
c (which are distinct due to the hypothesis ad−bc 	=

0) are roots of f − h. Then any such integer quadratic polynomials must be of the form

t (ax − b) (cx − d) for some t ∈ Z, because of the primitivity assumption gcd(a,b) =
gcd(c,d) = 1. This establishes the inclusion F ⊆ {ht(x) : t ∈ Z}. �

Remark 3.4. As the lemma above shows, the set {ht(x) : t ∈ Z} is exactly the set of

cubic monic polynomials satisfying the conditions a3f ( ba ) = 1 and c3f (dc ) = 1 appearing

in Lemma 3.1. It is not true that any such polynomial is irreducible. For example,

f (x) = x2(x − 2)+ 1 = (x − 1)(x2 − x − 1)

is not irreducible and yet it satisfies 13f ( 01 ) = f (0) = 1 and 13f ( 21 ) = f (2) = 1. In The-

orem 3.12, we shall see that these ht(x) are irreducible for all but finitely many t, and

then Lemma 3.1 will imply that the inclusion in the lemma above is cofinite. �

We note that at this point it is not obvious why F 	= ∅. Below we will show

that under suitable conditions on the parameters a,b, c,d, this is indeed the case and

moreover, our conditions will imply that the units aθ −b, cθ −d generate (together with

−1) the group of units in Z[θ ].
Recall that by Dirichlet’s theorem, in a totally real cubic field, the unit group

modulo its torsion part has rank 2, and that two units are called a system of fundamental

units if they generate the unit group modulo its torsion. If a = 0, then 0 · θ + b = b is a
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unit if and only if b = ±1, but of course it will not be a part of a system of fundamental

units, and therefore we must have that a 	= 0, and similarly c 	= 0. On the other hand, if

b = 0, then aθ can be a unit only when a = ±1, namely θ is a unit. If d is also zero, then

we get two units in {±θ} which cannot be a fundamental system. We therefore assume

in our discussion a, c 	= 0 and at least one of b,d is non-zero.

3.2 The case where b = 0 or d = 0

We analyze the case d = 0, that is, aθ −b, θ form a fundamental set of units and the case

b = 0 is symmetric. We prove the following.

Theorem 3.5. Let a,b ∈ Z\ {0} such that gcd (a,b) = 1. There exists a monic cubic

polynomial f (x) ∈ Z [x] such that a3f
(
b
a

) = 1 and f (0) = 1 if and only if a3 ≡b 1 and

b3 ≡a 1. In this case, there are infinitely many polynomials that satisfy this condition

and they have the form

fa,b,t(x) = (1)(
x3 + (a3 − 1)2 − b3

ab2
x2 − a(

a3 − 1

b
)x + 1

)
+ t · x(ax − b),

where t ∈ Z. Although this polynomial is supposed to be denoted by fa,b,1,0,t, we omit the

fixed parameters from the subscript to ease the notation. In particular, if f is irreducible

and θ := θa,b,t is a root of fa,b,t, then θ ,aθ − b are units in Z [θ ]. �

Proof. The last sentence in the statement of the theorem follows directly from

Lemma 3.1.

Let f (x) = x3 + Ax2 + Bx + 1 with A,B ∈ Z be a generic monic cubic polynomial

with integral coefficients and f (0) = 1.

The condition 1 = a3f
(
b
a

) = b3 + Ab2a + Ba2b + a3 is equivalent to finding a

solution for A = 1−b3−a3−Ba2b
ab2

, where A,B ∈ Z, which immediately implies that a3 ≡b 1

and b3 ≡a 1.

On the other hand, if these congruence conditions hold, then using the fact that

gcd(a,b) = 1 we get that there is a solution with A,B ∈ Z if and only if

0 ≡b2 1 − a3 − Ba2b = b(
1 − a3

b
− Ba2)

0 ≡b
1 − a3

b
− Ba2.
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Multiplying the last expression by a, we get that B = a 1−a3
b − bt for some t ∈ Z and

therefore

A = 1 − b3 − a3 − (a 1−a3
b − bt)a2b

ab2
= (1 − a3)2 − b3

ab2
+ ta,

which completes the proof. �

Example 3.6. In this example, we work out a simple recipe and show how to construct

an infinite family of mutually cubic root pairs (a,b) (i.e., a3 ≡b 1 and b3 ≡a 1).

• The pairs (a, 1), (1,b) are always mutually cubic root pairs. In these cases,

the polynomials are

f1,b,t (x) = x3 − bx2 + 1 + tx (x − b) = x (x + t) (x − b)+ 1

fa,1,t (x) = x3 + [(
a
(
a3 − 1

)− a+ t
)
x − 1

]
[ax − 1]

= x3 + [sx − 1] [ax − 1] ; s = a
(
a3 − 1

)− a+ t

• Given any b, in order to solve 0 ≡a b3 − 1 = (b− 1)
(
b2 + b+ 1

)
we can choose

a = b2 + b + 1. The second equation is satisfied automatically because a3 =(
b2 + b+ 1

)3 ≡b 13 ≡ 1.

• Similarly, given any b, wemay take a = 1−b and get that the two congruences

are satisfied.

• Another option is to fix some integer r and set a = r2 so we have a3 − 1 =(
r3
)2 − 1 = (

r3 − 1
) (
r3 + 1

)
. Thus, on choosing b = r3 + 1 we get that b3 ≡a 1

and the other congruence condition follows as well. �

We shall see in section 3.6 how to construct many more examples.

3.3 The case where both b,d are non-zero

We claim that if we wish aθ−b, cθ−d to be independent units in Z[θ ] we need to assume

ad− bc 	= 0. Otherwise we would have that cθ − d = ad
b θ − d = d

b (aθ − b), and because

N(aθ − b),N (cθ − d) = ±1 we would get that d
b = ±1. It follows that aθ − b = ± (cθ − d),

namely these units are not independent.

To make life easier, we will assume further that ad − bc = 1 (the case of

ad − bc = −1 will follows from switching between a and b and switching between c

and d). We prove the following analogue of Theorem 3.5.
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Theorem 3.7. Let a,b, c,d ∈ Z\ {0} such that ad − bc = 1. Then there exists a monic

cubic polynomial f (x) ∈ Z [x] such that a3f
(
b
a

) = 1 and c3f
(
d
c

) = 1 if and only if b3 ≡a 1

and d3 ≡c 1.

In this case there are infinitely many monic cubic polynomials that satisfy this

condition and they have the form fa,b,c,d,t (x) = x3 + Px2 +Qx + R with t ∈ Z where

R = d3 − b3 + tbd

(P,Q) =
(
1 − b3 − Ra3

ab
,
1 − d3 − Rc3

cd

)(
c −d

−a b

)
.

In particular, if fa,b,c,d,t(x) is irreducible and θ := θa,b,c,d,t is its root, then aθ − b, cθ − d

are units in Z [θ ]. �

Remark 3.8. Note that although it is not apparent by the formula above, due to

Lemma 3.3, the cubic polynomials arising in the above theorem are all of the form

h0(x)+ tg(x), where g = (ax − b)(cx − d). �

Proof. The last sentence in the statement of the theorem, regarding the units of Z[θ ],
follows directly from Lemma 3.1.

For the main part of the theorem, we note first that ad − bc = 1 implies that

gcd (a,b) = gcd (a, c) = gcd (d,b) = gcd (d, c) = 1.

Suppose that f (x) is amonic cubic polynomial such that a3f
(
b
a

) = 1 and c3f
(
d
c

) =
1. Writing f (x) = x3 + Px2 +Qx + R, we need to satisfy the equations

1 = b3 + Pb2a+Qba2 + Ra3 ⇐⇒ ab (Pb+Qa) = 1 − b3 − Ra3

1 = d3 + Pd2c +Qdc2 + Rc3 ⇐⇒ cd (Pd+Qc) = 1 − d3 − Rc3.

We conclude that ab | 1−b3−Ra3, and since a,b are coprime, this condition is equivalent

to b3 ≡a 1 and Ra3 ≡b 1. Similarly we get that d3 ≡c 1 and Rc3 ≡d 1, thus proving the

first direction of the theorem.

Assume now that b3 ≡a 1 and d3 ≡c 1. Since (a,b) = (c,d) = 1, there are solutions

to Aa3 ≡b 1 and Cc3 ≡d 1. Using (b,d) = 1 and the Chinese remainder theorem, we

conclude that there is a solution R ≡b A and R ≡d C so that Ra3 ≡b 1 and Rc3 ≡d 1 and

it is unique modulo bd. Once we have such an R we get that

(P,Q)

(
b d

a c

)
=
(
1 − b3 − Ra3

ab
,
1 − d3 − Rc3

cd

)
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(P,Q) =
(
1 − b3 − Ra3

ab
,
1 − d3 − Rc3

cd

)(
c −d

−a b

)

so that P,Q are also integers, thus completing the first part of the theorem, namely there

exists a monic cubic polynomial f (x) such that a3f
(
b
a

) = 1 and c3f
(
d
c

) = 1.

Assume now that we have a solution to the above equations. By our assumption,

we have that

R ≡b R (bc + 1)3 = R (ad)3 ≡b d
3

R ≡d −R (ad− 1)3 = −R (bc)3 ≡d −b3.

Since (b,d) = 1, the Chinese remainder theorem implies that all the solutions have the

form R = d3 − b3 + tbd which completes the proof. �

Example 3.9. We choose (a,b) as in the second bullet of Example 3.6, that is, (a,b) :=(
b2 + b+ 1,b

)
. To find (c,d)which solve the equation ad−bc = 1 we choose for example

(c,d) = (b+ 1, 1) and note that d3 ≡c 13 = 1 so that the conditions of the theorem are

satisfied. �

The next lemma generalizes the example above and using the results from

section 3.6 it produces infinitely many examples of suitable tuples a,b, c,d for the

theorem above.

Lemma 3.10. Let (a, c) be a pair such that a3 ≡c 1 and c3 ≡a −1. Then gcd (a, c) = 1

and the integers b,d such that ad− bc = 1 satisfy b3 ≡a 1 and d3 ≡c 1. �

Proof. Since ad− bc = 1 we get that

b3 ≡a − (bc)3 = − (ad− 1)3 ≡a 1

d3 ≡c (ad)
3 = (1 + bc)3 ≡c 1. �

3.4 Full escape of mass

Fix some integers a,b, c,d which satisfy the conditions in Theorem 3.5 or 3.7. Our goal

in this section is to show that if θt is a root of ht
def= fa,b,c,d,t (x), then the mass of the orbits

A ·L
Z[θt] which corresponds to the orders Z [θt] escape to infinity as |t| → ∞. Moreover, we

shall show that the Dirichlet shapes of the unit lattices in this family always converge

to the regular triangles lattice.
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For that, we will need to find good approximations for the roots of ht. Heuristi-

cally, as ht = h0 + tgwith g = (ax−b)(cx−d), when t is large, ht will have roots close to

the roots b
a ,

d
c of g, and as it is cubic, its third root will also be real. This simple idea is

developed further below. We shall use the following procedure. Since fa,b,c,d,t
(
b
a

) = ± 1
a3

we will start with a guess that b
a is close to the root. We will then use Taylor expansion

and the Newton Raphson method to approximate the root.

Theorem 3.11. Let ht (x) be a familiy of polynomials and αt ∈ R. Assume that

(1) h′
t (αt) 	= 0.

(2) lim
t→∞

∣∣∣ ht(αt)h′
t(αt)

∣∣∣ = 0.

(3) lim
t→∞

∣∣∣ ht(αt)h′
t(αt)

∣∣∣ ∣∣∣ h′′
t (αt+λ)
h′
t(αt)

∣∣∣ = 0 uniformly in |λ| ≤ 1. In particular this will be true if∣∣∣ h′′
t (αt+λ)
h′
t(αt)

∣∣∣ is uniformly bounded (in t and |λ| ≤ 1).

Then for t large enough the ht have roots θt which satisfy

θt = αt − ht(αt)

h′
t(αt)

+ o
(∣∣∣∣ht(αt)h′

t(αt)

∣∣∣∣
)
. �

Proof. We start by getting a first approximation for the root. Letting ε = −2
ht(αt)
h′
t(αt)

and

using the Taylor expansion for ht we get that for some |λ| ≤ 1 we have

ht(αt + ε) = ht(αt)+ h′
t(αt)ε + h′′

t (αt + λε)

2
ε2

= ht (αt)

[
−1 + 2

h′′
t (αt + λε)

h′
t(αt)

ht (αt)
h′
t(αt)

]
.

For t big enough |ε| ≤ 1 so that |ελ| ≤ 1 hence we can use assumption (3) to also

assume that the term in the brackets is negative. We conclude that ht (αt + ε) ,ht (αt)

have opposite signs and therefore ht has a root θt ∈ [αt,αt + ε].

Applying the taylor expansion for θt and using |αt − θt| ≤ |ε| = 2
∣∣∣ ht(αt)h′

t(αt)

∣∣∣ we get

0 = ht (αt)+ h′
t(αt) (θt − αt)+ h′′

t (αt + λε)

2
(θt − αt)

2

∣∣∣∣(θt − αt)+ ht (αt)
h′
t(αt)

∣∣∣∣ =
∣∣∣∣h′′

t (αt + λε)

2h′
t(αt)

∣∣∣∣ |θt − αt|2 ≤ 4

∣∣∣∣h′′
t (αt + λε)

2h′
t(αt)

∣∣∣∣
∣∣∣∣ht(αt)h′

t(αt)

∣∣∣∣
2

= 2

∣∣∣∣h′′
t (αt + λε)ht (α)
h′
t(αt)h

′
t (αt)

∣∣∣∣
∣∣∣∣ht(αt)h′

t(αt)

∣∣∣∣ = o
(∣∣∣∣ht(αt)h′

t(αt)

∣∣∣∣
)

and we are done. �
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We now consider the case where a,b, c,d are fixed and t goes to infinity. In what

follows, we use the notation f (t) ∈ �(g(t)) if there exists some constant C > 0 such that
1
C <

f (t)
g(t) < C for all |t| big enough.

Theorem 3.12. Fix a,b, c,d ∈ Z such that b
a 	= d

c , a, c 	= 0 and there exists a monic cubic

polynomial h(x) satisfying a3h
(
b
a

) = 1, c3h
(
d
c

) = 1. If b
a + d

c ∈ Z, we will further assume

that a 	= −c. We denote ht(x) = h(x)+tg(x), g(x) = (ax − b) (cx − d), where t ∈ Z. Then

the following holds

(1) For |t| big enough the polynomial ht (x) is totally real and irreducible.

(2) The 3 roots of ht(x) satisfy

θ1 = b

a
−�

(
1

a3 (bc − ad) t

)

θ2 = d

c
+�

(
1

c3 (bc − ad) t

)
θ3 = −act + O (1)

(3) The discriminant of ht is

Dht = (θ1 − θ2)
2 (θ2 − θ3)

2 (θ3 − θ1)
2 =

(
b

a
− d

c

)2

(act)4 + O
(
t3
)

�

Proof. We first note that since a,b, c,d are fixed we get that ht (x) = x3 +Ptx2 +Qtx+Rt

and

Pt = act + O (1)

Qt = − (ad+ bc) t + O (1)

Rt = bdt + O (1) .

Using these approximations and the hypothesis we get that

ht

(
b

a

)
= 1

a3
, h′

t

(
b

a

)
= 2Pt

b

a
+Qt + O (1) = (bc − ad) t + O (1)

h′′
t

(
b

c
+ λ

)
= 2Pt + O (1) = 2act + O (1) ∀ |λ| ≤ 1

It is now clear that

ht (b/a)
h′
t (b/a)

= 1/a3

(bc − ad) t + O (1)
= �

(
1

a3 (bc − ad) t

)
→ 0
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h′′
t (b/a+ λ)

h′
t (b/a)

= 2act + O (1)

(bc − ad) t + O (1)
→ 2ac

bc − ad

Hence, we can use Theorem 3.11 to approximate the root near b
a and similarly the roots

near d
c which are

θ1 = b

a
− ht (b/a)
h′
t (b/a)

+ o
(
ht (b/a)
h′
t (b/a)

)

θ2 = d

c
− ht (d/c)
h′
t (d/c)

+ o
(
ht (d/c)
h′
t (d/c)

)
.

Note that since b
a 	= d

c , these two roots are distinct for |t| big enough, so that ht (x), which

is real of degree three, has at least two real roots, and therefore has exactly three real

roots.

We claim that for |t| big enough, the roots of ht(x) are not integers. If b
a /∈ Z, then

for |t| big enough we see that θ1 /∈ Z. If b
a ∈ Z, then for |t| big enough θ1 can be an integer

if and only if it is b
a but ht( ba ) = ± 1

a3
	= 0. It follows that θ1, θ2 /∈ Z for |t| big enough.

Finally, since θ3 = −Pt − θ1 − θ2 and Pt is an integer, we see that θ3 is an integer if and

only if θ1 + θ2 is an integer. If b
a + d

c /∈ Z, then θ3 is not an integer for |t| large enough. If
b
a + d

c ∈ Z, then we need to consider the second approximation

h(b/a)

h′(b/a)+ tg′(b/a)
+ h(d/c)

h′(d/c)+ tg′(d/c)

= 1

act

[
1

a3

1
h′(b/a)
act + (

b
a − d

c

) + 1

c3
1

h′(d/c)
act + (

d
c − b

a

)
]

The limit of the expression inside the brackets is 1(
b
a−d

c

) [ 1
a3

+ 1
c3

]
. We assumed that in

this case a 	= −c so that the root θ3 modulo Z is �
(
1
t

) + o
(
1
t

)
and in particular it is not

an integer.

We showed that ht(x) does not have integer roots for |t| big enough, and since it

monic and has degree 3, we conclude that it is irreducible by using Gauss’ lemma.

Finally, the approximation of the discriminant follows from the approximation

of the roots. �

Recall from Corollary 2.2 that if R′
log2(D)

< 1
8 , where R′ is the relative discriminant

for some independent units, then these units are actually a fundamental set. In the

following theorem, we will use this in order to show that aθ −b, cθ −d are fundamental

for |t| big enough.
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Theorem 3.13. Consider a family of polynomials ht (x) as in Theorem 3.12 and choose

a root θ(t) for each t. Then for t large enough the unit group of Z[θ(t)] is generated

by
{
aθ(t) − b, cθ(t) − d,−1

}
. Furthermore, the Dirichlet shape of unit lattices of Z

[
θ(t)
]

converge to the shape of the regular triangle lattice Z [ω] (where ω = exp( 2π i3 ) and the

correspondence is
(
aθ(t) − b

) �→ 1 and
(
cθ(t) − d

) �→ (1 + ω) ) and the compact A-orbits

of the lattices Lt ∈ X corresponding to the orders Z[θ(t)] exhibit full escape of mass. �

Proof. The embedding of the units aθ(t) − b, cθ(t) − d in R3 is

log
(∣∣aθ(t) − b

∣∣)
=
(

− log
∣∣a2 (bc − ad) t

∣∣ , log ∣∣∣∣adc − b

∣∣∣∣ , log ∣∣a2ct
∣∣)+ O (1)

= log |t| (−1, 0, 1)+ O (1)

log
(∣∣cθ(t) − d

∣∣)
=
(
log

∣∣∣∣cba − d

∣∣∣∣ ,− log
∣∣c2 (bc − ad) t

∣∣ , log ∣∣ac2t∣∣)+ O (1)

= log |t| (0,−1, 1)+ O (1)

The relative regulator is log2 |t| + O (log |t|) so that

R′
t

log2
(Dt)

= log2
(t)+ O (log |t|)(

log
∣∣∣( ba − d

c

)2
(act)4

∣∣∣+ O (1)
)2 = log2

(t)+ O (log |t|)
(4 log |t| + O (1))2

→ 1

16
.

It follows from Corollary 2.2 that for |t| big enough, the units aθ(t) − b, cθ(t) − d are a

fundamental set.

We note that (−1, 0, 1) , (0,−1, 1) generate the regular triangles lattice. Indeed,

the rotation around (1, 1, 1) by 2π
3 is just the cyclic permutation, and these two vector

are just the rotation of each other, up to a minus sign.

Using the simplex set

� = {
log |t| (−1, 0, 1) , log |t| (1,−1, 0) , log |t| (0, 1,−1)

}+ O (1) ,

it is easily seen that �W�� = log |t| 2
3 + O (1). On the other hand D−1/6

t (1, 1, 1) is in the

normalized unimodular lattice Lt that correspond to Z
[
θ(t)
]
so that ht(Lt) ≥ 1√

3
D1/6
t =

�
(
t2/3

)
. We conclude that exp (�W��) = O

(
t
2
3

)
≤ R ·ht (Lt) for some R big enough and all

|t| big enough, namely these orders are (R, 1)-tight (see Definition 2.7 for the definitions).
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It follows that there is a full escape of mass by Theorem 2.11 which completes the

proof. �

In the case of simplest cubic fields, the fundamental units are θ , θ+1. It is known

that for infinitelymany t, the orderZ [θt], where θt is the root of ft(x) = x3−3x+1−tx(x+1),

is the ring of integers of Q (θt). In particular the Z [θt] belong to different field extensions.

We conclude that there are orbits coming from different fields such that their mass

escape to infinity.

While we do not have an example of orbits arising from the same field, we can

create long finite sequences of orbits such that most of their mass is near the cusp.

If the unit group is generated by 〈naθ − b,ncθ − d〉, then Z [θ ] and Z [nθ ] have the

same unit group. Since Dnθ = n6Dθ , the mass of its corresponding orbit is farther away

than the mass of Z [θ ]. This leads to the following result.

Theorem 3.14. Let 1 > ε > 0 and K ⊆ SL3(R)/SL3(Z) be a compact set. Then for each

N ∈ N we can find a sequence of decreasing orders Z [θ1] > Z [θ2] > · · · > Z [θN ] with their

corresponding orbits A · L1, ...,A · LN such that μi(A·Li∩K)
μi(A·Li) < ε for each i where μi is the

induced A-invariant measure on A · Li. �

Proof. Consider the polynomials ft,n(x) = x3 + t(2nx−1)(2n−1x−1)with corresponding

roots θt,n. From Theorem 3.13, for a given compact set K and ε > 0 we can find T big

enough such that for all t > T the A-orbits A · Lt,n corresponding to the orders Z
[
θt,n

]
satisfy

μt,n(A·Lt,n∩K)
μt,n(A·Lt,n) < ε for all 1 ≤ n ≤ N .

Notice that the minimal polynomial for 2θt,n is ft,n
(
x
2

) = 1
8 f8t,n−1.

It follows that 2θt,n is a root of f8t,n−1. Since Z
[
2θt,n

] = span
{
1, 2θt,n, 4θ2t,n

}
, we see that[

Z
[
θt,n

]
: Z

[
2θt,n

]] = 8, so these are distinct orders. Using induction, we get the orders

Z
[
2N−1θ

]
< Z

[
2N−2θ

]
< · · · < Z [2θ ] < Z [θ ] where θ := θT ,N , such that their corresponding

orbits A · Li all satisfy μi(A·Li∩K)
μi(A·Li)

< ε. �

Problem3.15. Is there an infinite sequence of lattices coming fromafixedfield, or better

yet, coming from a sequence of decreasing orders, which exhibits escape of mass? �

3.5 The lattices Z [θ ], where θ is a unit

In the previous section, the Dirichlet shapes of the unit lattices converged to the regular

triangles lattice. In this section we show how to construct more examples with different

unit lattice Dirichlet shape.
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We shall now confine our attention to analyze sequences of polynomials arising

from Theorem 3.5 where the parameters a,b are chosen as functions of t. More precisely,

given a mutually cubic root sequence (at,bt) we define (as in 1)

ht (x) = fat ,bt ,t (x) = x3 + Ptx
2 +Qtx + 1 (2)

(Pt,Qt) =
((

a3 − 1
)2 − b3

ab2
,−a

(
a3 − 1

b

))
+ t (a,−b) .

By Theorem 3.5, if θt is a root of ht then θt,atθt − bt are units of the order Z [θt]. In fact,

we will make the following standing assumption that will help us in the analysis.

Assumption 3.16. Let ht be the sequence of polynomials in 2 corresponding to the

mutually cubic root sequence (at,bt) and assume furthermore that

(1) |bt| > |at| > 0 for each t and

(2) ã := lim
t→∞

log|at|
log(t) and b̃ := lim

t→∞
log|bt|
log(t) exist and ã < 1

3 , b̃ < 1. �

Remark 3.17. The assumption above implies that art = o(t) for r ≤ 3 and that bt = o (t),

so that Pt = at + o (t) and Qt = −bt + o (t). �

We remark that some of the claims below are true in a more general setting than

the assumption above.

Theorem 3.18. Assume 3.16. Then the polynomial ht(x) is irreducible over Q for |t| big
enough. �

Proof. Since both the leading and free coefficient of ht are±1, we get that ht is reducible

(over Q) if and only if it has a root in ±1.

ht(±1) = O (1)+ Pt ±Qt = (a± b) t + o (t)

Since b 	= ±a are integers we conclude that |ht(±1)| ≥ t
2 for |t| big enough, and hence

ht (±1) 	= 0. �

Lemma 3.19. Assume 3.16. Then

(1)
∣∣∣ h′′

t (λ)

h′
t(0)

∣∣∣ is uniformly bounded for |λ| ≤ 1 and
∣∣∣ ht(0)h′

t(0)

∣∣∣ = �
(

1
|tb|
)

→ 0.

(2)
∣∣∣ h′′

t (b/a+λ)
h′
t(b/a)

∣∣∣ is uniformly bounded for |λ| ≤ 1 and
∣∣∣ ht(b/a)h′

t(b/a)

∣∣∣ = �
(

1|a3bt|
)

→ 0. �

Dirichlet Shapes of Unit Lattices and Escape of Mass 2833

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/9/2810/2929340 by M
edical Library user on 18 O

ctober 2018



Proof. (1) We have the following:

ht(0) = 1,
∣∣h′

t(0)
∣∣ = |Qt| = �(|tb|)

|λ| ≤ 1 ⇒ ∣∣h′′
t (λ)

∣∣ = |6λ+ 2Pt| = �(|ta|)

We conclude that
∣∣h′′

t (λ)
∣∣ = �(|ta|) = O

(∣∣h′
t(0)

∣∣) uniformly over |λ| ≤ 1 since |a| < |b|, so
that

∣∣∣ h′′
t (λ)

h′
t(0)

∣∣∣ is bounded. Since |ht(0)| = 1 we have that
∣∣∣ ht(0)h′

t(0)

∣∣∣ = �
(

1
|tb|
)

→ 0

(2) The second claim is similar — we have

ht(
b

a
) = 1

a3
,

∣∣∣∣h′
t

(
b

a

)∣∣∣∣ = �(|bt|) ⇒
∣∣∣∣ht(b/a)h′

t(b/a)

∣∣∣∣ = �

(
1

|a3bt|
)

→ 0

Secondly, we have that

|λ| ≤ 1 ⇒ ∣∣h′′
t (b/a+ λ)

∣∣ =
∣∣∣∣6
(
b

a
+ λ

)
+ 2Pt

∣∣∣∣ = �(|ta|)
∣∣∣∣∣h

′′
t

(
b
a + λ

)
h′
t

(
b
a

)
∣∣∣∣∣ = �(|ta|)

� (|tb|) = O
(∣∣∣a
b

∣∣∣) = O (1),

so that the expression above is bounded. �

Corollary 3.20. Assume 3.16. The roots and discriminant of ht(x) satisfy

θ1 =0 − ht(0)

h′
t(0)

+ o
(∣∣∣∣ht(0)h′

t(0)

∣∣∣∣
)

= �

(
1

|tb|
)

θ2 =b

a
− ht(b/a)

h′
t(b/a)

+ o
(∣∣∣∣ht(b/a)h′

t(b/a)

∣∣∣∣
)

= b

a

(
1 +�

(
1

a2b2t

))

θ3 =�(|at|)
Df =� (t4a2b2

)
�

Proof. The approximations for θ1, θ2 follow from the previous lemma and Theorem 3.11.

The third root satisfies

θ3 = −Pt − θ1 − θ2.

Note that θ1 → 0 while θ2 = �
(
b
a

) = o (t) so that |θ3| = �(|Pt|) = �(|at|). Since θ1 = o(θ2)

and θ2 = o(θ3) we get that the discriminant satisfies

Dt = (θ1 − θ2)
2 (θ2 − θ3)

2 (θ3 − θ1)
2 = �

(
t4a2b2

)
. �
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We are now ready to show that θ ,aθ − b form a fundamental set, compute the

Dirichlet shape of the unit lattice, and show that there is a partial escape of mass. Recall

Definition 2.10 and Theorem 2.11.

Theorem 3.21. Assume 3.16. For ht as above let θt be one of its roots and let Mt =
Z [θt] , Lt be the corresponding order and unimodular lattice. Then for |t| big enough we

have:

(1) The units {θt,atθt − bt} are a set of fundamental units for Mt.

(2) There exist simplex sets forMt which are (R, r)-tight for all 0 ≤ r < 1 which

satisfies 2
3 (1 − r)+ (

1
3 − r

) (
ã+ b̃

)
> 0. In particular, the family of compact

A-orbits ALt exhibits partial escape of mass (by choosing r = 1
3 ) and there

is a full escape if ã, b̃ = 0 (e.g., for at,bt bounded). �

Proof. Recall that we embedd the units into R3 by sending a unit α to (log |σi (α)|)31,
where σi : Z [θt] → R are the three real embeddings. Thus, using the previous corollary

for approximating the units θt,aθt − b, we get that

(log |σi (θt)|)31 =
(

− log |tb| , log
∣∣∣∣ba
∣∣∣∣ , log |at|

)
+ O (1)

(log |aσi (θt)− b|)31 = (
log |b| ,− log

∣∣a2bt
∣∣ , log ∣∣a2t

∣∣)+ O (1)

We prove (1). The relative regulator R′
i for these units is

det
((

− log|tb| log
∣∣∣ ba
∣∣∣

log|b| − log|a2bt|
)

+ O (1)

)

= log |tb| log ∣∣ta2b
∣∣− log |b| log

∣∣∣∣ba
∣∣∣∣+ O (log (t))

so that

R′
i

log2
(Di)

= log |tb| log ∣∣ta2b
∣∣− log |b| log ∣∣ ba ∣∣+ O (log (t))

log2
(t4a2b2)+ O (log (t))

−→
(
1 + b̃

) (
1 + 2ã+ b̃

)
− b̃

(
b̃− ã

)
4
(
2 + ã+ b̃

)2 .

We claim that for 0 ≤ ã, b̃ < 1, the expression above is always smaller than 1
8 , and

therefore the units θt,aθt −b form a fundamental set of units (see Corollary 2.2). Indeed,
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the expression is strictly less than 1
8 if and only if

0
?≤ 4

(
2 + ã+ b̃

)2 − 8
[(

1 + b̃
) (

1 + 2ã+ b̃
)

− b̃
(
b̃− ã

)]
= 8 + 4ã2 + 4b̃2 − 16ãb̃ = 4

(
b̃− ã

)2 + 8
(
1 − ãb̃

)

This is clearly true if 0 ≤ ã, b̃ ≤ 1 and the equality holds only if ã = b̃ = 1.

We prove (2). Instead of working with θt,aθt − b, we shall work with the simplex

set � = {
θt, θ

−1
t (aθt − b) , (aθt − b)−1}. These units correspond to

(
log

∣∣σi (θ−1 (aθ − b)
)∣∣)3

1

= −
(

− log |tb| , log
∣∣∣∣ba
∣∣∣∣ , log |at|

)
+
(
log |b| , log

∣∣∣∣ 1

a2bt

∣∣∣∣ , log ∣∣a2t
∣∣)+ O (1)

= (
log

∣∣tb2
∣∣ ,− log

∣∣ab2t
∣∣ , log |a|)+ O (1) .(

log
∣∣σi (aθ − b)−1

∣∣)3
1

= (− log |b| , log ∣∣a2bt
∣∣ ,− log

∣∣a2t
∣∣)+ O (1) .

The vertices of the fundamental domain conv (W�) correspond to

θλ1
(
a− bθ−1

)λ2 ((aθ − b)−1
)λ3 ,

where {λ1, λ2, λ3} = {
0, 1

3 ,
2
3

}
(see Definition 2.7). From these vertices we need to

find the maximum of the coordinates. For example, on the first coordinate we have

− log |tb| , log
∣∣tb2

∣∣ , − log |b|. To get a maximum, we clearly need to assign the 2
3 power

to log
∣∣tb2

∣∣ (which is positive) and 1
3 to − log |b| (which is bigger than − log |tb|), hence

obtaining log
(∣∣tb2

∣∣2/3 · |b|−1/3
)

= log
(
|t| 23 |b|

)
. A similar computation for the second and

third coordinate will produce log
(∣∣a2bt

∣∣ 23 ∣∣ b
a

∣∣ 13) = log
(
|t| 23 |ab|

)
and log

(
|at| 23 |a| 13

)
=

log
(
|t| 23 |a|

)
. It follows that the maximum is �W�� = log

(
|t| 23 |ab|

)
+ O (1).

The height of the unimodular lattice is controlled by the size of D−1/6 (1, 1, 1), so that

ht (Li) = �
(
t
2
3 |ab| 13

)
. The (R, r)-tightness condition is

exp
(
r
⌈
�̃
⌉)

≤ R · ht (Li) ⇐⇒ − log (R) ≤ log |ht (Li)| − r
⌈
�̃
⌉

so it is enough to show that log |ht (Li)| − r
⌈
�̃
⌉

→ ∞.

log |ht (Li)| − r
⌈
�̃
⌉

= log
(
t
2
3 |ab| 13

)
− r log

(
|t| 23 |ab|

)
+ O (1)

= log |t|
(
2

3
(1 − r)+

(
1

3
− r

)
log |ab|
log |t|

)
+ O (1)
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Thus, by taking |t| → ∞, we see that the condition is equivalent to

2

3
(1 − r)+

(
1

3
− r

)(
ã+ b̃

)
> 0.

We immediately see that if r ≤ 1
3 , then this condition is always satisfied and therefore

we always have partial escape of mass. On the other extreme, if ã, b̃ = 0 (e.g., if at,bt

are bounded), then the inequality is true for all r < 1, so that we have a full escape of

mass. �

Theorem 3.22. Assume 3.16. For ht as above let θt be one of its roots and let Mt =
Z [θt] , Lt be the corresponding order and unimodular lattice. Let [zt] ∈ SL2(Z)\H be the

Dirichlet shape of the unit lattice ψ
(
Z [θt]×

) ⊂ R3
0. Then the sequence [zt] converges to

some point [z] ∈ SL2 (Z) \H where z ∈ H satisfies the following:

• z(ã, b̃) = 1+2ã+
(
1+b̃+2ã

)
ω

1+ã+
(
ã−b̃

)
ω

, where ω = −1+√
3i

2 is a primitive root of unity of order

3.

• If ã = b̃ = 0, then z = 1 + ω, or equivalently the lattice shape is the regular

triangles lattice.

• If ã = 0 then |z| = 1.

• If ã = b̃, then Re(z) = 1
2 .

Moreover, if 0 < ã < b̃ are small enough (say, < 1
10 ), then z is in the interior of the

standard fundamental domain of SL2(Z) in H. �

Proof. From Theorem 3.21, the unit lattice is generated by the elements

(
log|σi(θt)|

log|aσi(θt)−b|
)3
1

= log (t)
( −1 0 1

0 −1 1

)+ log |b| ( −1 1 0
1 −1 0

)+ log |a| ( 0 −1 1
0 −2 2

)+ O (1)

= log (t)

[( −1 0 1
0 −1 1

)+ log |b|
log |t|

( −1 1 0
1 −1 0

)+ log |a|
log |t|

(
0 −1 1
0 −2 2

)+ O
(

1

log |t|
)]

.

The vectors
(

−1 0 1
)
and

(
0 −1 1

)
have the same norm and have angle π

3

between them, so we can define a similarity from R3
0 to C by sending them to 1, 1 + ω,

respectively. We thus get a lattice in C having the same shape which is generated (in the

limit as |t| → ∞) by

v = 1 − b̃ω + ã(1 + ω) = 1 + ã−
(
b̃− ã

)
ω
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u = 1 + ω + b̃ω + 2ã(1 + ω) = 1 + 2ã+
(
1 + b̃+ 2ã

)
ω.

This lattice has the same shape as the one generated by 1, uv , which is the claim in the

first bullet of the theorem.

If ã = 0, then u
v = 1+

(
1+b̃

)
ω

1−b̃ω and then |uv |2 = 1−
(
1+b̃

)
+
(
1+b̃

)2
1+b̃+b̃2 = 1. Similarly, if ã = b̃,

then u
v = 1+2ã+(1+3ã)ω

1+ã so that

Re
(u
v

)
=
(
1 + 2ã

1 + ã

)
+
(
1 + 3ã

1 + ã

)(−1

2

)
= 1

2
.

We leave it as an exercise to show that for small 0 ≤ ã, b̃, the number u
v is inside the

standard fundamental domain and is strictly inside if 0 < ã < b̃. �

We now have all we need in order to prove Theorem 1.4.

Proof of Theorem 1.4. Let (at,bt) be a mutually cubic root sequence and suppose that

the limits ã = lim
t→∞

log|at|
log|t| and b̃ = lim

t→∞
log|bt|
log|t| exist and satisfy 0 ≤ ã ≤ b̃. Given p,q ∈ N,

we reindex the sequence (at,bt, t) and consider the sequence (atp ,btp , tq). Obviously, this

is also a mutually cubic root sequence, and the corresponding limits are p
q ã and p

q b̃. In

particular, taking r = p
q ∈

[
0,min( 1

3ã ,
1
b̃
)
)
∩Q we get a sequence that satisfies Assumption

3.16, hence we get the limit point z(rã, rb̃) = 1+2rã+
(
1+rb̃+2rã

)
ω

1+rã+
(
rã−rb̃

)
ω

in �, where � was defined

to be the set of Dirichlet shapes of unit lattices. Finally, using the continuity of z(x,y)

it follows that z(rã, rb̃) ∈ � for all r ∈
[
0,min( 1

3ã ,
1
b̃
)
]
. �

3.6 Finding the limits of lim
t→∞

log|at|
log|bt|

As Theorem 1.4 shows, once we are given a mutually cubic root sequence (at,bt), the

parameter that controls the curve is the ratio ã
b̃

= lim
t→∞

log|at|
log|bt| and we are left with the

task of finding such sequences inducing different ratios. Let us denote by � the set of

such limits inside P1(R) (ignoring the case where ã = b̃ = 0), so that any 0 ≤ λ ≤ 1 in �

corresponds to a curve in �.

Before we turn to study the set �, let us concentrate on the case where ã = 0.

Since bt | a3
t − 1, unless at = 1 for all t big enough, we will also get that b̃ ≤ 3ã = 0,

which by Theorem 3.22 implies that the Dirichlet shapes of the unit lattices converge to

the regular triangle lattices (which is like the case discussed in Section 3.4).

Assuming now that at = 1 for all t, Theorem 3.5 tell us that

ft (x) = (
x3 − btx

2 + 1
)+ t · x (x − bt) = x (x − bt) (x + t)+ 1.
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This type of polynomials was already studied by Cusick in [2] where he showed that

the limit points of the Dirichlet shapes of unit lattices is on |z| = 1 in the hyperbolic

plane. This follows readily from our computations in the previous section if bt = o (t)

and in addition we know that there is always a partial escape of mass. Moreover, when

bt ∼ tα, α < 1, the cosine of the angle of the corresponding point on the hyperbolic plane

is 1−2α−2α2

2+2α+2α2
. In particular, the angle is π

3 when α = 0 and it increases up until 2π
3 when

α → 1−. In case that bt = Bt for some constant B, our analysis does not hold. This case

falls into the settings studied in [10] where it was shown that there is a full escape of

mass and that the Dirichlet shapes of the unit lattices converge to the regular triangles

lattice.

Let us continue to the general case of an element in �. We have already seen

several examples in Example 3.6 of mutually cubic root sequences producing the limits

0,∞, 1
2 ,

1
3 ,

2
3 ∈ �, so that � is not empty. On the other hand, if at,bt 	= ±1 and b3

t ≡at 1,

then |at| | ∣∣b3
t − 1

∣∣ so that lim
t→∞

log|at|
log|bt| ≤ lim

t→∞
log

∣∣∣b3t −1
∣∣∣

log|bt| → 3 and reversal of the roles of at,bt

produces a lower bound 1
3 , so that � ⊆ [

1
3 , 3

] ∪ {0,∞}.

Lemma 3.23. We have the following:

(1) The set � is closed under taking inverses.

(2) If s ∈ �, then 3 − s ∈ �. �

Proof. (1) Clearly, any mutually cubic root sequence (at,bt) produces another such

sequence (bt,at) so that s ∈ � if and only if s−1 ∈ �. On the level of units, this is nothing

more than considering the fundamental units
{
θ−1,−θ−1 (aθ − b)

}
instead of {θ ,aθ − b}.

(2) Let (a,b) be a mutually cubic roots pair and suppose first that b 	= 1. Setting

c = 1−b3
a 	= 0 we get that c | 1 − b3 so that b3 ≡c 1. On the other hand, we have that

c3 ≡b (ca)
3 = (

1 − b3
)3 ≡b 1

so that (c,b) is another mutually cubic root pair. Taking the limit we get that c̃
b̃

= 3b̃−ã
b̃

=
3 − ã

b̃
.

If on the other hand bt = 1 for almost all t, then ã
b̃

= ∞ (since we assumed that

(ã, b̃) 	= (0, 0)), and then 3 − ∞ = ∞ ∈ �, hence the claim is still true. �

Both of the maps s → s−1 and s → 3 − s have order 2, but their composition

T(s) = 3− 1
s has infinite order and acts on P1(R). We start with some basic properties of

this Möbius action.
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Lemma 3.24. Let T(s) = 3 − 1
s . Then:

(1) The fixed points of T are α± = 3±√
5

2 where 1
3 < α− < α+ < 3. In addition, any

other T orbit is infinite.

(2) T[(α−,α+)] = (α−,α+) and T(s) > s in this segment.

(3) T[(α+,∞]] = (α+, 3] and T(s) < s for s ∈ (α+,∞].
(4) T−1[[0,α−)] = [ 13 ,α−) and T(s) < s for s ∈ [ 13 ,α−).

(5) T satisfies T( 13 ) = 0, T(0) = ∞ and T(∞) = 3.

(6) The only accumulation points of a single T-orbit in � are α±. �

Proof. Left as an exercise. �

Corollary 3.25. � is infinite. �

Proof. Since 3, 1
3 ,

1
2 ∈ �, application of Lemma 3.24 provides 2 infinite T-orbits in �,

and in particular � is infinite in itself. �

It is now easily seen that � contains at least two accumulation points at 3±√
5

2

which are exactly the fixed points of T . Define T̃ to be the corresponding action on

sequences of mutually cubic roots, that is, T̃(at,bt) = (
1−a3t
bt

,at). This is a composition of

switching the sequences (at,bt) �→ (bt,at) and then using the fact that b3
t − 1 ≡at 0 we

map (bt,at) �→ (
1−a3t
bt

,at).

Suppose now that bt | a2
t +at +1, for example, the sequence (t, 1). In this case we

will get that (1−at)bt | a3
t −1 sowemay define the operation D̃(at,bt) = (at, (1−at)bt) and

hope to get a new mutually cubic root pair. As the next lemma shows, while we cannot

use this operation on any sequence of mutually cubic root pairs, there are enough such

sequences.

Lemma 3.26. Define D̃ : (Z − {1})× Z → (Z − {1})× Z by D(at,bt) = (at, (1− at)bt). Then

the following holds:

(1) The map D̃ induces a bijection between the set of mutually cubic root pairs

(a,b) with b | a2 + a+ 1 and the set of mutually cubic root pairs (c,d) with

(1 − c) | d.
(2) Suppose that (at,bt) is a sequencemutually cubic root pairs satisfying |at| →

∞ and bt | a2
t + at + 1 for each t (namely, we can apply D̃ to it). If s :=

limt→∞
log |at |
log |bt | >

3+√
3

2 (including ∞), then (ct,dt) = T̃ ◦ T̃ ◦ D̃(at,bt) is also a
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sequence mutually cubic root pairs satisfying dt | c2t + ct + 1 and |ct| → ∞.

Moreover, we have

R(s) := lim
t→∞

log |ct|
log |dt| = 5s− 3

2s− 1

and 3+√
3

2 < R(s) < s. �

Proof. (1) Suppose first that (a,b) is a mutually cubic roots pair with b | a2 + a+ 1. We

clearly have that (c,d) := (a, (1−a)b) satisfy (1−c) | d and c3 −1 ≡d 0. Furthermore, we

have that d3 = (1 − a)3b3 ≡a b3 ≡a 1 so that (c,d) is a mutually cubic root pair. On the

other hand, if (c,d) is a mutually cubic root pair with (1 − c) | d, then we similarly get

that (c, d
1−c ) is again amutually cubic root pair satisfying b | a2+a+1 and D̃(a,b) = (c,d).

(2) Assuming that (at,bt) is a mutually cubic root pair satisfying bt | a2
t + at + 1

we get that

(ct,dt) = T̃ ◦ T̃ ◦ D̃(at,bt) = T̃ ◦ T̃(at, (1 − at)bt) = T̃
(

1 − a3
t

(1 − at)bt
,at

)

= T̃
(
a2
t + at + 1

bt
,at

)
=
((

1 −
[
a2
t + at + 1

bt

]3)
/at,

a2
t + at + 1

bt

)

We assumed that bt | a2
t +at+1 and |at| → ∞ so that in particular bt,at, 1−at 	= 0

for almost all t and we can divide by them. It follows that (ct,dt) are well defined and

from part (1) it is also a mutually cubic root pair.

Since s = limt→∞
log |at |
log |bt | >

3+√
3

2 > 1
2 and |at| → ∞, we conclude that

∣∣∣ a2t +at+1

bt

∣∣∣ → ∞
and therefore

R(s) := lim
t→∞

log |ct|
log |dt| = 5s− 3

2s− 1
.

It is straight forward to show that if s > 3+√
3

2 , then s > R(s) > 3+√
3

2 . It follows

that since |dt| =
∣∣∣ a2t +at+1

bt

∣∣∣ → ∞ we must also have that |ct| → ∞. Finally, we need to

show that c2t + ct + 1 ≡bt 0. Indeed, since gcd(at,dt) = 1 we have ct ≡dt (1−d3
t ) · 1

at
≡dt

1
at

so that

c2t + ct + 1 ≡dt

1 + at + a2
t

a2
t

= 1 + at + a2
t

bt

bt
a2
t

≡dt 0. �

Corollary 3.27. There are infinitely many T-orbits in� in the open interval
(

3−√
5

2 , 3+√
5

2

)
and � has infinitely many accumulation points. �

Dirichlet Shapes of Unit Lattices and Escape of Mass 2841

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2018/9/2810/2929340 by M
edical Library user on 18 O

ctober 2018



Proof. Consider the sequence (at,bt) = (t, 1) ofmutually cubic root pairs. This sequence

satisfies the conditions from the previous lemma, that is, that 1 = bt | a2
t + at + 1 and

that |at| = |t| → ∞ as t → ∞. Furthermore, we have that s = lim log |at |
log |bt | = ∞ > 3+√

3
2

so from the previous lemma, for every n the sequence [(T̃2 ◦ D̃)n(t, 1)]∞t=1 is a sequence

of mutually cubic root pairs, and it corresponds to the limit Rn(∞) ∈ �, where R(s) is

defined in the previous lemma. This sequence is decreasing and converges to 3+√
3

2 which

is in the segment
(

3−√
5

2 , 3+√
5

2

)
, hence 3+√

3
2 is an accumulation point. Using the fact that

� is closed under the action of T , we see that there are infinitely many accumulation

points in �.

Since the only limits of T-orbits are 3±√
5

2 , it must contain infinitely many orbits

in order to have infinitely many accumulation points. �
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