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We show that there exists a subset of full Lebesgue measure V ⊂ R
n such that for every

ε > 0 there exists δ > 0 such that for any v ∈ V the dimension of the set of vectors w

satisfying

lim inf
k→∞

k1/n〈kv − w〉 � ε

(where 〈·〉 denotes the distance from the nearest integer) is bounded above by n − δ. This

result is obtained as a corollary of a discussion in homogeneous dynamics and the main

tool in the proof is a relative version of the principle of uniqueness of measures with

maximal entropy.

1 The Main Result and Its Applications

1.1 Geometry of numbers

A general theme in the geometry of numbers is to fix a domain S ⊂ R
d and study the

intersection of it with sets possessing an algebraic structure such as lattices or their

cosets. One is usually interested in bounding the cardinality of such an intersection
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2 S. Lim et al.

FIG. 1. Spikes for at = diag
(
et, e−t) of a ball around 0, a half-ball around 0, a ball around (3,2)

and this will be the case in our discussion as well. We begin by describing the domains

we will consider and which we refer to as spikes. Throughout, we fix a dimension d ≥ 2

and a diagonal flow

at = diag
(
ec1t, . . . , ecdt) ;

where ci are fixed nonzero numbers such that
∑

cj = 0. Given a bounded open set

O ⊂ R
d, we define the positive spike of O with respect to at to be the set (One could

work with two-sided spikes taking the union over t ∈ R in (1.1) but our results are

stronger as the domain decreases so we will concentrate on the one-sided case.)

S+(at,O) = S+(O)
def=
⋃

t>0

a−1
t O. (1.1)

As at will be fixed throughout our discussion we omit it from the notation.

The space of unimodular lattices (i.e., of covolume 1) in R
d will be denoted by X. By

a unimodular grid y in R
d, we mean a coset x + w of a lattice x ∈ X where w ∈ R

d. We

denote by Y the space of unimodular grids in R
d and by π : Y → X the natural projection.

Note that for x ∈ X, the fiber π−1(x) is simply the torus R
d/x. For x ∈ X and an open set

O ⊂ R
d, we set

FS+(O)
def= {

y ∈ Y : y ∩ S+(O) is finite
}

;

FS+(O)(x)
def= FS+(O) ∩ π−1(x). (1.2)

Our main result, Theorem 1.3 below, says that under a mild dynamical assump-

tion on the forward at-orbit of x, the set FS+(O)(x) cannot have maximal Hausdorff

dimension in π−1(x). Let us introduce this dynamical assumption. The standard action

of G0
def= SLd(R) on R

d induces a transitive action of G0 on X, and since for x0 = Z
d

we have Stab x0 = G0(Z), we may identify X � G0/G0(Z). This endows X with a smooth
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Dimension Bound for Badly Approximable Grids 3

manifold structure and with a unique G0-invariant Borel probability measure, which we

denote by mX.

For a locally compact second countable Hausdorff space Z we will denote by

P(Z) the space of Borel probability measures on Z and endow it with the weak* topology

by identifying P(Z) with a subset of the unit sphere in the dual of C0(Z). For μ ∈ P(Z)

and f ∈ C0(X) we alternate between the notations μ(f ) and
∫

f dμ. We will denote by

δz ∈ P(Z) the Dirac probability measure at z. If a map g : Z → Z is fixed we denote for

z ∈ Z and T ∈ Z+, δT
z

def= 1
T

∑T−1
i=0 δgiz ∈ P(Z). Note that by the Banach–Alaoglu theorem

{αμ : α ∈ [0, 1], μ ∈ P(Z)} is compact in the weak* topology and thus for any z ∈ Z, the

sequence δT
z ∈ P(Z) has accumulation points of the form αμ with α ∈ [0, 1] and μ ∈ P(Z).

The following is concerned with the situation where δT
z can accumulate on a probability

measure. Throughout we use the notation δT
x for the transformation a = a1 : X → X.

Definition 1.1. (Heavy lattice)

(1) A lattice x ∈ X is called heavy (for at in positive time) if

{
δT

x : T ∈ Z+
}ω ∩ P(X) �= ∅,

where Fω is the set of accumulation points of F.

(2) We fix once and for all a sequence of compactly supported functions ψ i ∈
Cc(X) such that 0 � ψ i � 1, and ψ−1

i (1) is an increasing sequence of compact

sets that covers X. Given a sequence of nonnegative numbers ηi → 0, we

define

P (X, (ηi))
def= {μ ∈ P(X) : ∀i, μ(ψi) � 1 − ηi} .

(3) Given a sequence of nonnegative numbers ηi → 0, we define

H(ηi)
def=
{
x ∈ X :

{
δT

x : T ∈ Z+
}ω ∩ P (X, (ηi)) �= ∅

}
.

As the following lemma shows, any heavy lattice belongs to some H(ηi). The

point in defining P(X, (ηi)) and H(ηi) is that our results about heavy lattices will be

uniform on H(ηi).

Lemma 1.2.

(1) P(X) = ⋃
P(X, (ηi)) where the union is taken over all sequences of

nonnegative numbers ηi → 0.
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4 S. Lim et al.

(2) The set of heavy lattices equals
⋃

H(ηi) where the union is taken over all

sequences of nonnegative numbers ηi → 0.

(3) P(X, (ηi)) is compact.

Proof.

(1) For μ ∈ P(X), μ ∈ P(X, (ηi)) for ηi
def= 1 − μ(ψi). Note that ηi → 0 because

ψ−1
i (1) is an increasing cover of X.

(2) Let x be a heavy lattice and let μ ∈ {δT
x : T ∈ Z

+}ω ∩ P(X). By part (1.2) μ ∈
P(X, (ηi)) for some sequence (ηi). By definition we then have that x ∈ H(ηi).

(3) Let μm ∈ P(X, (ηi)) be a sequence and let μ be a weak* accumulation point

of it. For each i we have μ(X) � μ(ψi) = limm μm(ψi) � 1 − ηi. Letting i → ∞
we obtain μ(X) = 1 and μ(ψ i) � 1 − ηi so that μ ∈ P(X, (ηi)) by definition. �

Our main result is as follows. Here, dimH denotes Hausdorff dimension with

respect to the Euclidean metric on π−1(x) � R
d/x.

Theorem 1.3 (Heavy lattices have few bad grids). For any bounded open set O ⊂ R
d, if

x is heavy (for at in positive time), then

dimH FS+(O)(x) < d.

In fact, for a given ηi → 0, there exists δ = δ(O, (ηi)) > 0 such that for any x ∈ H(ηi),

dimH FS+(O)(x) < d − δ.

By Lemma 1.2(2), results stated for lattices in H(ηi) for arbitrary (ηi) automat-

ically hold for heavy lattices. Thus, the second part of Theorem 1.3 implies the first

and demonstrates the uniformity gained by exhausting the set of heavy lattices by the

sets H(ηi). The following corollary shows that this uniformity survives if one is only

interested in an almost sure statement with respect to the smooth measure mX.

Corollary 1.4 (Random lattices have few bad grids). For any bounded open set O ⊂ R
d,

there exists δ > 0 such that for mX-almost any lattice x, dimH FS+(O)(x) � d − δ.

Proof. By the ergodicity of the action of a1 on X, for almost any x, δT
x

w∗
−→ mX which

trivially implies mX ∈ {
δT

x : T > 0
}ω

. By Lemma 1.2(1), mX ∈ P(X, (ηi)) for a suitable

sequence (ηi). Thus by definition x ∈ H(ηi). The result then follows from Theorem 1.3. �
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Dimension Bound for Badly Approximable Grids 5

1.2 An application to Diophantine approximation

For a vector v ∈ R
n, we are interested in the behavior of the sequence

{
kv modZ

n ; k ∈ N
} ⊂ R

n/Zn.

If v does not belong to a rational subspace, this sequence is dense and even equidis-

tributed so that for any target w ∈ R
n, we have that infk≥1〈kv−w〉 = 0, where 〈t〉 denotes

the distance from t to Z
n. A more subtle question is whether lim infk→∞ ψ(k)〈kv−w〉 = 0

for some prescribed function ψ ↗ ∞ on N. One may visualize this as a shrinking target

problem where one asks if for any ε > 0 and for arbitrarily large k, the point kv modZ
n

on the n-torus is inside the ball of radius ψ (k)−1ε centered at w (which is the shrinking

target). The case that we consider here is ψ (k) = k1/n. We call w ε-bad for v if

lim inf
k→∞

k1/n〈kv − w〉 � ε, (1.3)

and denote

Badε(v)
def= {

w ∈ R
n : wis ε-bad for v

}
,

Bad(v)
def=
⋃

ε>0

Badε(v).

Our main application is the following.

Theorem 1.5. For any ε > 0 there exists δ > 0 such that for Lebesgue almost every

v ∈ R
n, dimH Badε(v) < n − δ.

To put this in context we mention that it follows from [2] that for any v ∈ R
n,

dimH Bad(v) = n. Later, it was shown in [6] that Bad(v) is a winning set.

Note also that the conclusion of the theorem cannot hold for every v ∈ R
n.

Indeed, if v lies in a rational subspace, then for small enough ε, the set Badε (v) has

nonempty interior and thus obviously has dimension n. It is clear that when the vector

v is rational, it is in particular singular, that is, for any δ > 0, there exists Tδ such that

for any T > Tδ, there exists k < T such that T1/n〈kv〉 < δ.

On the other hand, in Section 6 we construct non-singular vectors which violate

the conclusion of the theorem and satisfy dimH Badε(v) = n for a positive ε.

As we will see in Section 4, Theorem 1.5 holds not only for almost every v, but

for any heavy vector v (although the constant δ in Theorem 1.5 might depend on v),
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6 S. Lim et al.

see Definition 5.1 and Theorem 5.3. It follows from [12] that for non-singular vectors

λ(Bad(v)) = 0, where λ is the Lebesgue measure on R
n. Thus the above theorem is an

upgrade of the result in [12] just mentioned under the stronger assumption of heaviness.

We refer the reader to Section 4 for other examples of applications of Theorem 1.3, such

as Diophantine approximation of affine subspaces of Rn.

1.3 Outline of the proof of Theorem 1.3

We briefly describe our strategy for the proof of the first part of Theorem 1.3 which

is similar in spirit to the idea given in [1, Remark 2.2] and which could be described

in a nutshell as rigidity of measures with maximal entropy. Assuming by way of

contradiction that dim FS+(O)(x) = d for a heavy lattice x, we construct a sequence of

probability measures μk defined by taking the uniform measures νk on large finite sets

Sk ⊂ FS+(O)(x) ⊂ π−1(x) and averaging them along the a1-orbit; μk = n−1
k

∑nk
i=1(a1)i∗νk, for

a suitable nk (defined in the proof of Proposition 2.3). The heaviness assumption allows

us to take a weak-* limit μ of μk that is a probability measure on Y and moreover, the

maximal dimension assumption translates into the maximality of the relative entropy

of μ with respect to a1 relative to the factor X. We then prove that maximality of the

relative entropy implies invariance of μ under the whole subgroup of translations in

R
d. This leads us to a contradiction because by construction, μ is supported on the

accumulation points of forward at-orbits of the points in FS+(O) and in particular, must

be supported in the closed at-invariant set {y ∈ Y : 0 ∈ y or ∀t ∈ R, at · y ∩ O = ∅}.

1.4 Plan of the paper

Apart from this introduction, this paper consists of five parts. In Section 2, we show that

a set of large dimension in the space of grids, contained in a single fiber, can be used

to construct an at-invariant measure on Y with large entropy with respect to the factor

X. Then, in Section 3, we study at-invariant measures with maximal relative entropy

with respect to X; using work of Einsiedler and Lindenstrauss, we show that they are

invariant under the unstable horospherical subgroup U+ associated to at. In Section 4,

using the two previous sections, we finish the proof of Theorem 1.3, before explaining

the applications to Diophantine approximation in Section 5. We conclude the paper with

Section 6, detailing the construction of some lattices with non-divergent at-orbits that

do not satisfy the conclusion of Theorem 1.3.
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Dimension Bound for Badly Approximable Grids 7

2 Measures With Large Entropy

Given a heavy lattice x for at and a set S ⊂ π−1(x) of grids lying above x, we explain

how to construct a measure μ on Y with large entropy relative to the factor X, which is

supported in the closure of the forward orbit of S under the diagonal flow at.

2.1 Action on the space of grids

Just like for the space X of lattices in R
d, one can view the space Y of unimodular grids

as a homogeneous space. Indeed, the natural action on R
d of the group G = ASLd(R) of

area-preserving affine transformations induces a transitive action on Y, with Stab y0 =
G(Z) if y0 = Z

d, so that Y � G/G(Z) has a natural smooth manifold structure, and carries

a unique G-invariant probability measure mY.

We denote by U the unipotent radical of G, which consists of all translations on

R
d. It is clear that U acts simply transitively on R

d. One naturally identifies G0 = SLd(R)

with G/U, and then, the canonical projection π : Y → X intertwines the actions of G and

G0 on Y and X, respectively, in the sense that for any g ∈ G and y ∈ Y,

π(g · y) = ḡ · π(y),

where ḡ denotes the projection of g to G0 � G/U. Clearly, if y is a grid with underlying

lattice x, then

π−1(x) = Uy.

It is sometimes convenient to view G as a subgroup of SLd+1(R) by

G =
{(

A u

0 1

)

; A ∈ SLd(R), u ∈ R
d

}

,

in which case the unipotent radical is U =
{(

Id u

0 1

)

: u ∈ R
d

}

.

Recall that at = diag
(
ec1t, . . . , ecdt

)
is a one-parameter diagonal subgroup in

G0 = SLd(R). We take a lift of this one-parameter group to G ⊂ SLd+1(R) given by(
at 0

0 1

)

and by abuse of notation we denote it again by at. It will be convenient to

normalize the flow at so that

max
1≤i≤d

ci = 1. (2.1)
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8 S. Lim et al.

We let a
def= a1 be the time-one map for the diagonal flow and denote by G+ the unstable

horospherical subgroup for a in G, that is,

G+ def=
{
g ∈ G | atga−1

t → e as t → −∞
}

.

We let U+ def= U ∩ G+ so that if J+ = {i ∈ {1, . . . , d} | ci > 0}, then we have

U+ =
{(

Id u

0 1

)

; u = t(u1, . . . , ud) ∈ R
d with ui = 0 ∀i �∈ J+

}

.

On U, we will use the Euclidean distance dE inherited from R
d. This metric

induces a metric, still denoted by dE, on the fiber π−1(x) � R
d/x of all grids lying above

x ∈ X. Given a grid y, we define the fiber injectivity radius at y to be the maximal number

ry > 0 such that the orbit map u �→ uy is injective on the open ball BU,dE
2ry

(0) of radius

2ry in U for the Euclidean metric dE, therefore isometric on BU,dE
ry (0). Note that the fiber

injectivity radius is constant along the fiber and is bounded away from zero on compact

sets in Y.

On U+, we will also make use of another metric, or rather, quasi-metric, more

adapted to the action of at. We define the quasi-norm associated to a by |u|a =
maxj∈J+ |uj|1/cj . The function on U+ × U+, given by da(u, v) = |u − v|a, is a quasi-metric:

it is symmetric, is positive definite, and satisfies, for some constant C depending on the

ci, for all u, v, w in U+,

da(u, w) � C (da(u, v) + da(v, w)) .

The ball BU+,da
δ (u) of radius δ around u for da is simply the set of v ∈ U+ such that

da(u, v) < δ.

Remark 2.1. We observe two things:

(1) A ball BU+,da
δ in U+ is simply a box with side-lengths 2δcj , j ∈ J+ with respect

to dE.

(2) The action of at on U+ is a dilation by a factor of et for the quasi-metric da;

that is, for all u, v in U+ and t ∈ R, we have

da(atu, atv) = etda(u, v). (2.2)
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Dimension Bound for Badly Approximable Grids 9

We let W+
y be the image of y under the action of BU+,dE

ry . We call W+
y the injective

unstable leaf at y in the fiber. By definition of ry, the orbit map identifies (BU+,dE
ry , dE)

and (W+
y , dE) isometrically. Of course, the quasi-metric da on U+ also induces a quasi-

metric on W+
y , which we again denote by da. Since we will use both distances dE and da

on W+
y (which are far from being equivalent if cj < 1 for some j ∈ J+), we will indicate

the metric in the superscript when necessary.

2.2 Dimensions

Let X be a space endowed with a quasi-metric d. For a bounded subset S ⊂ X we will

consider its lower Minkowski dimension (or lower box dimension) dimdS for the quasi-

metric d, defined by

dimdS
def= lim inf

δ→0

log Nd(S, δ)

log 1
δ

,

where Nd(S, δ) is the maximal cardinality of a δ-separated subset of S for the quasi-

metric d. If S is unbounded, we let dimdS = sup{dimdS ∩ K ; K compact}.
In particular, for a set S ⊂ W+

y , we will consider its lower Minkowski dimensions

dimaS
def= dimda

S, dimMS
def= dimdE

S

for the quasi-metric da and the Euclidean metric dE, respectively. We will also consider

the Hausdorff dimension dimH S, always defined with respect to the Euclidean metric.

We refer the reader to [7] for general properties of Minkowski or Hausdorff dimensions,

such as the inequality

dimMS ≥ dimH S.

We introduce dima in order to relate dimension dimM to entropy, and further to

Hausdorff dimension. The following simple observation gives a relation between dimMS

and dimaS. Let

ha =
∑

i∈J+
ci.

Lemma 2.2. We have dimaU+ = ha, and moreover, for any set S ⊂ U+,

dimaS � dimMS + ha − dim U+.

Proof. A δ-ball for da is a Euclidean box with side lengths 2δci , so that any bounded

set in U+ can be covered by O(δ−ha) balls of radius δ for da. Conversely, for volume
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10 S. Lim et al.

reasons, one needs at least O(δ−ha)δ-balls for da to cover any nonempty open set in U+.

This shows the first equality.

For the general inequality, let u = dim U+. Each da-ball of radius δ can be

covered by at most δha−u boxes of side lengths 2 δ which in turn can be covered by

the same number of Euclidean balls (up to a multiplicative constant, say C). Thus

Nda(S, δ) ≥ Cδha−uNdE (S, δ). Taking logarithms, dividing by log 1/δ, and taking δ → 0

give the result. �

2.3 Constructing a measure of large entropy

We refer the reader to [5, §2.2] for the definition of relative entropy with respect to an

infinite countably generated σ -algebra; in particular, if P is any countable partition of Y,

then Hμ(P|X) will denote the relative entropy of P with respect to the σ -algebra π−1(BX),

that is, the inverse image under π of the Borel σ -algebra BX on X. Finally, hμ(a|X) denotes

the relative entropy of the transformation a = a1 : Y → Y for the measure μ (relative to

X), that is,

hμ(a|X)
def= sup

P
inf

q∈Z+
1

q
Hμ

(
P(q)|X

)
,

where the supremum runs over countable partitions P with Hμ(P|X) < ∞, and P(q) =
∨q−1

i=0 a−iP denotes the join of the preimages a−iP. We can now state the main result of

this section. The reader might benefit from reviewing Definition 1.1 first.

Proposition 2.3 (Lower bound on the entropy). Let x be a lattice in H(ηi) for some

sequence ηi → 0 and let y ∈ π−1(x). Furthermore, let

μ0 ∈
{
δT

x : T ∈ Z+
}ω ∩ P(X, (ηi)).

For any S ⊂ W+
y , where W+

y ⊂ π−1(x) is the injective unstable leaf at y in the fiber, there

exists an a-invariant μ ∈ P(Y) satisfying:

(1) π∗μ = μ0,

(2) Supp μ ⊂⋂s∈Z+
⋃

t≥s atS,

(3) hμ(a|X) � dimaS � dimMS + ha − dim U+.

Furthermore, if P is any finite partition of Y satisfying:

• P contains an atom P∞ of the form π−1(P0∞), where X \ P0∞ has compact

closure and ψi|P0∞ ≡ 0 for some i (ψ i is as in Definition 1.1).
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Dimension Bound for Badly Approximable Grids 11

• ∀P ∈ P \ {P∞}, diam P < r, with r ∈ (0, 1
2 ) such that any da-ball of radius 3r

has Euclidean diameter smaller than the fiber injectivity radius on Y \ P∞,

• ∀P ∈ P, μ(∂P) = 0,

then, for all q � 1, 1
qHμ(P(q)|X) � dimaS − Dηi, where D is a constant depending only on

the ci’s and the dimension d.

The proof of Proposition 2.3 will follow the strategy used to derive the vari-

ational principle for the topological entropy, as in [5, §5.3.3], but there is a slight

complication here, because the space Y of grids is not compact. To solve this problem,

we will need Lemma 2.4 below, which is inspired by [4, Lemma 4.5].

Lemma 2.4. Let P0∞ ⊂ X be such that X \ P0∞ has compact closure. Set P∞ = π−1(P0∞)

and fix 0 < r < 1 such that any da-ball of radius 3r has Euclidean diameter smaller than

the fiber injectivity radius on Y \ P∞. Let y ∈ Y \ P∞ and set I = {t ∈ Z
+ | aty ∈ P∞}. For

any nonnegative integer T, let

Ey,T =
{
z ∈ W+

y | ∀t ∈ {1, . . . , T} \ I, dE(aty, atz) � r
}

.

Then one can cover Ey,T by CeD|I∩{1,...,T}|da-balls of radius δT = re−T, where C is a constant

depending on y, r, and a, and D is a constant depending on a and the dimension d. In

particular, they are independent of T.

Proof. Before we start the proof, we make the following observation: for y′, z′ /∈ P∞
in the same fiber, the intersection BUy′,dE

r (y′) ∩ W+
z′ is contained in B

W+
z′ ,dE

r (z′′) for some

z′′ ∈ W+
z′ since the Euclidean distance dE on the fiber Uy′ = π−1(π (y′)) restricts to a

Euclidean distance on the injective unstable leaf at z′. Moreover, since r < 1 and by (2.1),

Euclidean r-balls are contained in da-balls and so we conclude that

BUy′,dE
r ( y′) ∩ W+

z′ ⊂ B
W+

z′ ,da
r (z′′). (2.3)

We prove the lemma by induction on T.

T = 0: By (1) of Remark 2.1, the number of balls of radius δ0 = r for the metric da

needed to cover W+
y is bounded by a integer constant C depending on a, r,

and y, so that the lemma holds in this case.

T − 1 → T: Choose D such that any da-ball of radius δ on U+ can be covered by eD da-

balls of radius δ/e. Assume for clarity that eD is an integer. By the induction

hypothesis, Ey,T−1 can be covered by NT−1
def= CeD|I∩{1,...,T−1}|da-balls of radius

δT−1 = re−T+1.
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12 S. Lim et al.

If T ∈ I, we simply cover each δT−1-ball in W+
y by eD balls of radius δT = re−T for

da, and get a cover Ey,T with cardinality NT = eDNT−1 by da-balls.

If T /∈ I, we need to cover Ey,T by NT = NT−1da-balls of radius δT. Denote

the above cover of Ey,T−1 by {BW+
y ,da

δT−1
(zi); i = 1, . . . , NT−1}. As Ey,T ⊂ Ey,T−1, the set

{Ey,T ∩ B
W+

y ,da

δT−1
(zi); i = 1, . . . , NT−1} covers Ey,T. We claim that for each zi, there exists some

pi with

Ey,T ∩ B
W+

y ,da

δT−1
(zi) ⊂ BW+

z ,da
δT

(pi),

so that Ey,T is actually covered by {BW+
z ,da

δT
(pi)} that is, by NT = NT−1da-balls of radius

δT. Observe that

Ey,T ∩ BW+
z ,da

δT−1
(z) ⊂ a−1

T

(
BUaTy,dE

r (aTy) ∩ aTBW+
z ,da

δT−1
(z)
)

.

By our choice of r, the fact that aTy /∈ P∞ (and hence aTz /∈ P∞) and (2.2), the map aT

scales da by a factor of eT and we conclude that

aTBW+
z ,da

δT−1
(z) ∩ BUaTy,dE

r (aTy) = B
W+

aT z,da
er (aTz) ∩ BUaTy,dE

r (aTy) (2.4)

which is contained in a single da-ball of radius r by the observation (2.3) (with z′ =
aTz, y′ = aTy). Thus Ey,T ∩ BW+

z ,da
δT−1

(z) is contained in a single da-ball of radius re−T. This

concludes the inductive step. �

Now we can prove Proposition 2.3.

Proof of Proposition 2.3. The assumption that μ0 ∈ {δT
x : T ∈ Z+

}ω ∩ P(X, (ηi)) means

that we may fix an increasing sequence of integers (nk) such that

μ0
k

def= 1

nk

nk−1∑

n=0

δanx
w∗

−→ μ0 ∈ P (X, (ηi)) .

Then, for each k � 1, let Sk be a maximal ρk-separated subset of S, for the metric da,

where ρk
def= e−nk . Let νk

def= 1
|Sk|
∑

y∈Sk
δy be the normalized counting measure on Sk and

μk
def= 1

nk

nk−1∑

n=0

an
∗ νk.

Since π : Y → X is proper, and the measures π∗μk = μ0
k converge to a probability measure

μ0 on X, we conclude that the sequence of measures (μk) is tight, that is, that any
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Dimension Bound for Badly Approximable Grids 13

weak-* converging subsequence of it converges to a probability measure. Extracting a

subsequence if necessary, we may assume without loss of generality that (μk) converges

weak-* to some probability measure, which we denote by μ. By continuity of π∗ we

obtain

π∗μ = π∗ lim
k

μk = lim
k

μ0
k = μ0

which is the item (1) in the proposition.

By construction, Suppμ is contained in the set of accumulation points of the

forward orbit of S under (at) which establishes item (2) in the proposition.

The right inequality in item (3) follows directly from Lemma 2.2. For simplicity

of notation, let β
def= dimaS, so that

lim inf
k→∞

log |Sk|
nk

� β. (2.5)

To prove that μ also satisfies the the left inequality in item (3) of the proposition saying

that hμ(a|X) � β we proceed as follows. Given i we construct a partition P of Y for

which

1

q
Hμ

(
P(q)|X

)
� β − Dηi, (2.6)

where D is as in Lemma 2.4. This implies that

hμ(a|X) � hμ (a,P|X) = lim
q

1

q
Hμ

(
P(q)|X

)
� β − Dηi,

and letting i → ∞ we obtain the desired inequality hμ(a|X) � β.

To this end fix i0 and consider η = ηi0 . Choose a set P0∞ ⊂ X such that X \ P0∞
is compact, μ0(∂P0∞) = 0, and such that ψi0 |P∞

0
≡ 0. Since μ0 ∈ P(X, (ηi)) it follows that

μ0(P0∞) � ηi0 = η and in turn, P∞ = π−1(P0∞) satisfies μ(P∞) � η and μ(∂P∞) = 0. Since

(μk) converges to μ, we have for any y ∈ π−1(x), with I = {t ∈ Z
+ | aty ∈ P∞} (note that

I depends only on x),

lim sup
T→∞

1

nk
|I ∩ {1, . . . , nk}| � η. (2.7)

Then, let r ∈ (0, 1
2 ) be as in Lemma 2.4 and complement P∞ to a finite partition P =

{P∞, P1, . . . , P�} of Y such that for every atom Pi �= P∞ and every x ∈ X, the Euclidean

diameter of Pi ∩ π−1(x) is at most r, and such that for each P ∈ P, μ(∂P) = 0, where ∂P
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14 S. Lim et al.

denotes the boundary of P. To build such P, observe that around each point z in Y \ P∞,

there exists a ball Bz around z in Y such that μ(∂Bz) = 0, and

∀x ∈ X, diamE(Bz ∩ π−1(x)) < r. (2.8)

A finite cover of Y \ P∞ by such balls generates the desired partition by a simple

disjointification procedure.

For q � 1, let P(q) = ∨q−1
p=0 a−pP. For nk large, write the Euclidean division of

nk − 1 by q

nk − 1 = qn′ + s, with s ∈ {0, . . . , q − 1}.

By subadditivity of the entropy with respect to the partition, for each p ∈ {0, . . . , q − 1},

Hνk

(
P(nk)|X

)
� Hapνk

(
P(q)|X

)
+ Hap+qνk

(
P(q)|X

)
+ · · · + Hap+qn′

νk

(
P(q)|X

)
+ 2q log |P|.

Summing those inequalities for p = 0, . . . , q − 1, and using the fact that entropy is a

concave function of the measure, we obtain

qHνk

(
P(nk)|X

)
�

nk−1∑

n=0

Hanνk

(
P(q)|X

)
+ 2q2 log |P|

� nkHμk

(
P(q)|X

)
+ 2q2 log |P|

and therefore

1

q
Hμk

(
P(q)|X

)
� 1

nk
Hνk

(
P(nk)|X

)
− 2q log |P|

nk
. (2.9)

Now since νk is supported on a single atom of the σ -algebra π−1(BX), we have

Hνk(P(nk)|X) = Hνk(P(nk)). Moreover, we claim that

Hνk

(
P(nk)

)
� log |Sk| − D|I ∩ {1, . . . , nk}| − D − log C, (2.10)

where C, D are the constants given by Lemma 2.4. To see this, it suffices to show that an

atom of P(nk) contains at most CeD(|I∩{1,...,nk}|+1) points of Sk = Suppνk. This follows from

Lemma 2.4. Indeed, Equation (2.8) implies that if P is any nonempty atom of P(nk), fixing

any y ∈ P,

Sk ∩ P = Sk ∩ [y]P(nk) ⊂ Ey,nk−1
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Dimension Bound for Badly Approximable Grids 15

can be covered by CeD(|I∩{1,...,nk}|+1) many re−nk-balls for da. Since Sk is ρk = e−nk-

separated with respect to da and r < 1
2 , we get

card
(
Sk ∩ [y]P(nk)

)
� CeD(|I∩{1,...,nk}|+1).

Going back to (2.9), we find

1

q
Hμk

(
P(q)|X

)
� 1

nk

(
log |Sk| − D|I ∩ {1, . . . , nk}| − D − log C − 2q2 log |P|

)
.

Now the atoms of P – and hence of P(q) – satisfy μ(∂P) = 0, so we may let k go to infinity

to obtain equation (2.6) using (2.5) and (2.7).

Finally the second part of the proposition regarding partitions satisfying the

bullet-requirements follows by reviewing the proof of (2.6) and noting that the only

properties of the constructed partition P we used are those in the bullet list. �

3 Maximal Entropy and Invariance

In this section we recall some concepts and results from [3] and explain how they imply

the following proposition, which is essential for the proof of Theorem 1.3.

Proposition 3.1 (Maximal entropy implies U-invariance). Let μ be an a-invariant

probability measure on Y. Then

hμ(a|X) � ha

with equality if and only if μ is U-invariant.

To prove Proposition 3.1 we relate the “dynamical” relative entropy hμ(a|X)

to some relative “static” entropy Hμ(A1|A2) where the Ai are countably generated σ -

algebras that encode the dynamics. For definitions and elementary properties of relative

entropies of σ -algebras we refer the reader to [5, Chapter 2].

Definition 3.2 (7.25. of [3]). Let G− def= {g ∈ G | atga−1
t → e as t → ∞} be the stable

horospherical subgroup associated to a and let U− = U ∩ G−. Let μ be an a-invariant

measure on Y and U < G− a closed a-normalized subgroup.

(1) We say that a countably generated σ -algebra A is subordinate to U (mod μ)

if for μ-a.e. y, there exists δ > 0 such that

BU
δ · y ⊂ [y]A ⊂ BU

δ−1 · y.

(2) We say that A is a-descending if a−1A ⊂ A.
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16 S. Lim et al.

Theorem 3.3 (Einsiedler–Lindenstrauss). Let μ be an a-invariant probability measure

on Y. If A is a countably generated sub-σ -algebra of the Borel σ -algebra which is

a-descending and U−-subordinate then Hμ(A|a−1A) � ha with equality if and only if

μ is U−-invariant.

Proof. By considering the ergodic decomposition one sees that it is enough to prove

the theorem in the case μ is ergodic. Under the ergodicity assumption the statement

follows directly from combining [3, Proposition 7.34] and [3, Theorem 7.9]. �

The following lemma furnishes the link between the relative dynamical entropy

hμ(a|X) and the relative entropy Hμ(A1|A2) for suitable Ai. If P is a partition of Y, we

write for any integer m,

P∞
m =

∞∨

k=m

a−kP.

Recall also that a partition P is said to be a two-sided generator for a with respect to

an a-invariant probability measure if the Borel σ -algebra is generated up to null sets by

the union of all partitions
∨m

−m a−kP, m � 1.

Lemma 3.4. Assume that μ is an a-invariant probability measure on Y and P is a

countable partition that is a two-sided generator for a with respect to μ. Let A be the

σ -algebra generated by P∞
0 ∨ π−1(BX). Then

hμ(a|X) = Hμ(A|a−1A).

Proof. Let P be a countable partition that is a two-sided generator for a. By [5,

Proposition 2.19 and Theorem 2.20], writing C for π−1(BX), we have

hμ(a|X) = Hμ(P|P∞
1 ∨ C) = Hμ(P∞

0 ∨ C|P∞
1 ∨ C).

Since C is a-invariant, we indeed find

hμ(a|X) = Hμ(A|a−1A).

�

We now prove Proposition 3.1 by constructing (almost by citation) a two-sided generator

P for a modulo μ with the property that P∞
0 ∨ π−1(BX) is U−-subordinate, and then the

statement follows by combining Theorem 3.3 with Lemma 3.4.
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Dimension Bound for Badly Approximable Grids 17

Proof of Proposition 3.1. Writing the ergodic decomposition μ = ∫ μE
y dμ(y), we have

hμ(a|X) =
∫

hμE
y
(a|X) dμ(y),

so it is enough to prove the proposition for μ ergodic.

We can then use [3, Proposition 7.44] to obtain a countable partition P that is a

generator for a mod μ, and such that P∞
0 is a-descending and subordinate to G−. Let

C def= π−1(BX) and A def= C ∨ P∞
0 .

Then A is clearly countably generated and a-descending, and we claim that it is also

U−-subordinate. Indeed, since [y]C = π−1(π({y})) is equal to the orbit of y under the

unipotent radical U, we get [y]A = U·y∩[y]P∞
0

. But P∞
0 is subordinate to G−, and for δ > 0,

BU−
δ1

· y ⊂ BG−
δ · y ∩ U · y and BG−

δ−1 · y ∩ U · y ⊂ BU−
δ−1
1

· y, (3.1)

for some constant δ1 depending on δ and y, because G−y ∩ Uy = U−y. This shows that,

for almost every y, for some δ > 0,

BU−
δ · y ⊂ [y]A ⊂ BU−

δ−1 · y,

that is, that A is subordinate to U−.

By Lemma 3.4 we have hμ(a|X) = Hμ(A|a−1A), and so Theorem 3.3 shows that

hμ(a|X) � ha with equality if and only if μ is U−-invariant. Moreover, if hμ(a|X) = ha

then

hμ(a−1|X) = hμ(a|X) = ha = ha−1 ,

where the last equality follows from the fact that
∑d

j=1 cj = 0. We then apply the same

reasoning to a−1 and find that μ is also U+-invariant. This completes the proof since U

is generated by U+ and U−, because we assume that for any 1 � j � d, cj �= 0. �

4 Proof of the Main Theorem

Using the results of the preceding two sections, we now state and prove Theorem 4.2,

which is the main result of this article. We deduce Theorem 1.3 as a corollary.
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18 S. Lim et al.

4.1 O-avoiding grids

Before we can state the more precise version of Theorem 1.3 that we will derive here, we

need to set up some notation.

For a bounded open set O ⊂ R
d and a heavy lattice x, our goal is to bound the

dimension of the set

FS+(O)(x) =
{
y ∈ π−1(x) : y ∩ (∪t≥0a−tO) is finite

}
.

For an interval I ⊂ R, let

EO
I = { y ∈ Y : y ∩ (∪t∈Ia−tO) = ∅} = { y ∈ Y : ∀t ∈ I, aty ∩ O = ∅}

and

EO
I (x) = EO

I ∩ π−1(x).

It is more natural from the dynamical point of view to work with EO
R

than with FS+(O)

because it is at-invariant and closed. However, we insist on working with finite inter-

sections instead of empty intersection to obtain lim inf statements in our applications

rather than inf. Note that for a vector v ∈ R
d, either atv → ∞ or vi = 0 for all i ∈ J+ in

which case atv → 0. Since all cj are nonzero and O is bounded, we deduce that

FS+(O)(x) ⊂
⋃

r≥0

EO
[r,∞)(x) ∪

{
y ∈ π−1(x) : ∃v ∈ y, ∀i ∈ J+, vi = 0

}
. (4.1)

Since

dimH

{
y ∈ π−1(x) : ∃v ∈ y, ∀i ∈ J+, vi = 0

}
= d − |J+| � d − 1, (4.2)

we will focus on bounding the dimension of each EO
[r,∞)

(x). Finally, a nice feature of the

set EO
[r,∞)

is the following simple observation which can be verified by the reader.

Lemma 4.1. Let y ∈ EO
[r,∞)

and suppose z is an accumulation point of the forward orbit

{aty}t>0. Then z ∈ EO
R

. In particular, any measure μ obtained by averaging along the

forward trajectory of y is supported in EO
R

.

We are now in a position to state and prove our main results.
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Dimension Bound for Badly Approximable Grids 19

Theorem 4.2 (Heavy lattices have few bad grids). Fix a sequence ηi → 0, and a bounded

open set O in R
d. Then, there exists δ > 0 such that for any r > 0 and any x ∈ H(ηi),

dimMEO
[r,∞)(x) � d − δ.

Proof of Theorem 1.3. Using (4.1) and (4.2), the theorem follows at once from

Theorem 4.2, because EO
[r,∞)

is increasing in r. Note that as opposed to dimM , the

Hausdorff dimension of a countable union of sets is bounded above by any bound

on the individual dimensions, hence our passage to Hausdorff dimension (see also

Remark 4.3 below). �

Remark 4.3. The set FS+(O)(x) is dense is π−1(x), so that dimMFS+(O)(x) = d. But its

Hausdorff dimension is strictly less than d.

Proof of Theorem (4.2). Fix ε > 0. We argue by contradiction and assume the following:

∀m ≥ 1, ∃rm > 0, ∃xm ∈ H(ηi) : dimMEO
[rm,∞)(xm) � d − 1

m
. (4.3)

We may further assume that rm → ∞ as m → ∞. Fix a smaller open set O′ whose closure

is in O. Set u = dim U+.

Claim 1. For any large enough m, there exists a grid ym ∈ π−1(xm) such that the injective

unstable leaf W+
ym

satisfies

dimM

(
W+

ym
∩ EO′

[rm,∞)

)
� u − 1

m
.

Recall that U− = U ∩ G− = U ∩ {g ∈ G | atga−1
t → e as t → ∞}. For any grid y ∈ Y,

any v ∈ U− of norm � 1 and t > 0, the two grids aty and atvy differ by a translation in

the direction of U− which is of norm � e−αt, where α = min
{|ci| : i ∈ J−} > 0. We deduce

that if aty ∩ O = ∅ and t is large enough, then atvy ∩ O′ = ∅. In particular, for large

enough m and and all v ∈ U− of norm � 1, we have vEO
[rm,∞)

⊂ EO′
[rm,∞)

. For such m and

for any ym ∈ EO
[rm,∞)

,

dimM

(
W+

ym
∩ EO′

[rm,∞)

)
+ dim U− � d − 1

m
.

Since ci �= 0 for all i , d − dim U− = u and Claim 1 follows.
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20 S. Lim et al.

The first part of Proposition 2.3 yields an a-invariant probability measure μm

with

(1) π∗μm ∈ P(X, (ηi)).

(2) Supp μm ⊂ EO′
R

(by Proposition 2.3 and Lemma 4.1)

(3) hμm(a|X) � ha − 1
m .

Lemma 1.2(3) says that P(X, (ηi)) is compact. Together with the fact that π : Y → X is

proper, after taking a subsequence of μm, we may assume that μm converges to some

a-invariant probability measure μ such that π∗μ ∈ P(X, (ηi)). Since Supp μm ⊂ EO′
R

and

EO′
R

is closed, we conclude that μ is supported in EO′
R

. Our next goal is to show the

following.

Claim 2. The measure μ is U-invariant.

To prove Claim 2 we apply the second part of Proposition 2.3 to the measures μm

simultaneously in the following manner. Fix i0 and let η = ηi0 . Let P be a finite partition

of Y satisfying:

• P contains a single unbounded atom P∞ and it is of the form π−1(P0∞), where

ψi0 |P0∞ ≡ 0 (ψ i is as in Definition 1.1).

• ∀P ∈ P \ {P∞}, diam P < r, with r ∈ (0, 1
2 ) such that any da-ball of radius 3r

has Euclidean diameter smaller than the fiber injectivity radius on Y \ P∞,

• ∀P ∈ P, ν(∂P) = 0 for ν ∈ {μ, μm : m ∈ N}.

A similar partition was built in the proof of Proposition 2.3. The only difference here is

that in the third bullet here we demand that the boundaries of the atoms of P will be

simultaneous null sets for more than one measure. Since we are only requiring this for

a countable collection of measures this is easily achieved.

From the second part of Proposition 2.3 we deduce that for any m, for all q � 1,

1

q
Hμm

(
P(q)|X

)
� ha − 1

m
− Dηi0 . (4.4)

Since the boundary of the atoms of P(q) is μ-null, we can pass to the limit as m → ∞ in

(4.4) and deduce that for any q, 1
qHμ(P(q)|X) � ha − Dηi0 . Taking q → ∞ and i0 → ∞ we

deduce that

hμ(a|X) � lim
1

q
Hμ

(
P(q)|X

)
� ha.

By Proposition 3.1 we deduce that equality holds and that μ is U-invariant, as claimed.
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Dimension Bound for Badly Approximable Grids 21

We arrive at the desired contradiction because μ is supported in EO′
R

, which

cannot contain a full fiber: given a lattice x, the grids of x which contain points in O′

cannot be in EO′
R

. �

5 Diophantine Approximation

In this section we prove Theorem 1.5, which, in fact, will follow from a sharper result

in the spirit of Theorem 4.2. We also reformulate and generalize the result in terms of

approximation of affine subspaces of Rn by integer points.

5.1 Inhomogeneous Diophantine approximation of vectors in R
n

Fix a dimension n � 1 and let d
def= n + 1. For clarity of exposition, we start with the

diagonal flow at = diag
(
et, . . . , et, e−nt

)
. Recall that given a vector v ∈ R

n, we let

Badε(v) =
{

w ∈ R
n : lim inf

k→∞
k1/n〈kv − w〉 � ε

}
.

Given a vecitor v ∈ R
n we let xv

def= (In v
0 1

)
x0 ∈ X, where x0 denotes the identity coset,

which represents the standard lattice Z
d. The Diophantine properties of the vector v

are usually captured by the dynamics of the lattice xv. For example, singularity of v

is equivalent to the divergence of the orbit (atxv)t>0. In analogy with Definition 1.1 we

make the following.

Definition 5.1. A vector v ∈ R
n is said to be heavy if the lattice xv is heavy according

to Definition 1.1.

A nice exercise is the following characterization of heaviness of a number α ∈ R

in terms of the continued fraction expansion of α.

Exercise 5.2. Show that a number α = [a0; a1, a2, . . . ] is heavy if and only if

∀δ > 0 ∃ε > 0 such that lim inf
N→∞

1

N

N∑

k=1

max
{
log εak, 0

}
� δ.

We prove the following result, which will easily imply Theorem 1.5.

Theorem 5.3 (Heavy vectors have few badly approximable points). If v ∈ R
n is heavy

then for any ε > 0, dimH(Badε(v)) < n. In fact, if ηi → 0 is a sequence of nonnegative

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article-abstract/doi/10.1093/im
rn/rnx330/4825832 by D

epartm
ent of C

hem
istry user on 18 O

ctober 2018



22 S. Lim et al.

numbers, then for any ε > 0 there exists δ = δ(ε, (ηi)) > 0 such that for any v ∈ R
n for

which xv ∈ H(ηi), dimH(Badε(v)) � n − δ.

Proof. We write vectors in R
d = R

n × R as ws
def= (w

s

)
with w ∈ R

n, s ∈ R. Let

(ηi) be as in the statement and let v ∈ R
n be such that xv ∈ H(ηi). Let ε > 0 and let

O def= {
ws ∈ R

d : s ∈ (0, 1), ‖w‖ < ε
2

}
. Note that

S+(O) =
{
ws : s � 1, s1/n‖w‖ <

ε

2

}
∪ O. (5.1)

We know by Theorem 1.3 that there exists δ = δ(ε, (ηi)) > 0 such that dimH FS+(O)(xv) �
d − δ. We will show that for any w ∈ Badε (v) and for any s ∈ [0, 1], the grid xv − ws

belongs to FS+(O)(xv). This will finish the proof.

To this end, let w ∈ Badε (v) and s ∈ [0, 1]. Note that

xv − ws =
⋃

k∈Z

{(
�m + kv − w

k − s

)

: �m ∈ Z
n

}

.

We call k the layer parameter of

{(
�m + kv − w

k − s

)

: �m ∈ Z
n

}

. Note that the set of

vectors in each layer is discrete. Therefore if we suppose that xv − ws intersects S+(O)

in infinitely many points, then we conclude that S+(O) must contain points in arbitrarily

high layers (i.e., with k arbitrarily large). In particular, the description of S+(O) given in

(5.1) implies that there exist arbitrarily large k > 0 and vectors �m ∈ Z
n such that

(k − s)1/n‖ �m + kv − w‖ � ε

2
.

In particular, lim infk→∞ k1/n〈kv − w〉 < ε and so w /∈ Badε (v) contradicting our

assumption. We deduce that #
{
xv − ws ∩ S+(O)

}
< ∞, that is, xv − ws ∈ FS+(O)(xv) as

claimed. �

As a corollary, we now derive Theorem 1.5 from the introduction, which we recall

here for convenience.

Corollary 5.4. For any ε > 0, there exists δ > 0 such that for almost every v ∈ R
n,

dimH Badε(v) < n − δ.
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Dimension Bound for Badly Approximable Grids 23

Proof. The proof is similar to the proof of Corollary 1.4. It is well known that

� =
{

v ∈ R
n : δT

xv

w∗
−→ mX

}

has full Lebesgue measure (see for example [8] which covers also the weighted case).

Using Lemma 1.2(1) we choose (ηi) so that mX ∈ P(X, (ηi)). We then have by definition

that {xv : v ∈ �} ⊂ H(ηi). The theorem thus follows from Theorem 5.3. �

Theorem 5.3 can be generalized in several ways, using Theorem 4.2 for more

general flows (at). For example, if (i1, . . . , in) is an n-tuple of real numbers such that

∀�, i� ∈ (0, 1) and
n∑

�=1

i� = 1,

we can define, for any vector v =

⎛

⎜⎜
⎝

v1
...

vn

⎞

⎟⎟
⎠ ∈ R

n,

Badε
(i1,...,in)(v)

def=

⎧
⎪⎪⎨

⎪⎪⎩
w =

⎛

⎜⎜
⎝

w1
...

wn

⎞

⎟⎟
⎠ ∈ R

n : ∀�, lim inf
k→∞

ki�〈kv� − w�〉 � ε

⎫
⎪⎪⎬

⎪⎪⎭
,

and

Bad(i1,...,in)(v) =
⋃

ε>0

Badε
(i1,...,in)(v).

It is known (see for example [9–11]) that for any v ∈ R
n, dimH Bad(i1,...,in)(v) = n.

Theorem 4.2 applied with the flow at = diag
(
ei1t, . . . , eint, e−t

)
yields the following.

Theorem 5.5 (Heavy vectors for weighted approximation). Let v ∈ R
n be heavy for

at = diag
(
ei1t, . . . , eint, e−t

)
. Then, for all ε > 0,

dimH Badε
(i1,...,in)(v) < n.

Moreover, for any ε > 0, there exists δ > 0 such that for a.e. v ∈ R
n,

dimH Badε
(i1,...,in)(v) < n − δ.

Being very similar to that of Theorem 5.3, the proof of Theorem 5.5 is left to the

reader.
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24 S. Lim et al.

5.2 Approximation of affine subspaces

We obtain another natural generalization of Theorem 5.3 by replacing the vector v with

a matrix. We choose to present this generalization in a projective manner, that is, in the

context of Diophantine approximation of affine subspaces of Rd by points in Z
d, which

is not common but which we find very natural. The case of Theorem 5.3 corresponding

to the subspace being a line (see Remark 5.6).

Let Grass(�, d) be the Grassmannian of �-dimensional linear subspaces of R
d.

Recall that by Minkowski’s first theorem on convex bodies, for every W0 ∈ Grass(�, d),

the inequality

d(k, W0) � 2d · ‖k‖ −�
d−�

has infinitely many solutions k ∈ Z
d, where ‖k‖ denotes the Euclidean norm of k. It

is therefore natural to say that an affine subspace W of dimension � in R
d is ε-badly

approximable if it satisfies

lim inf
k→∞
k∈Zd

‖k‖ �
d−� d(k, W) � ε.

Let GrassA(�, d) denote the Grassmannian of �-dimensional affine subspaces of

R
d and π : GrassA(�, d) → Grass(�, d) the natural projection, mapping an affine subspace

to its linear part. For a linear subspace W0 ∈ Grass(�, d) of Rd, we want to study the set

Badε
�,d(W0)

def=
⎧
⎨

⎩
W ∈ π−1(W0) | lim inf

k→∞
k∈Zd

‖k‖ �
d−� d(k, W) � ε

⎫
⎬

⎭

of ε-badly approximable affine subspaces W � R
d with linear part W0. It is known

that [6]

dimH
(
Bad�,d(W0)

) = d − �,

where Bad�,d(W0)
def= ⋃

ε>0 Badε
�,d(W0).

Remark 5.6. Let n = d − 1. For v ∈ R
n, consider the line W0 ∈ R

d spanned by the

vector ṽ = (1
v

) ∈ R
d. Then a vector w ∈ R

n is in Bad(v) if and only if w̃ + W0 is a badly

approximable line in R
d, so that the setting of the previous subsection corresponds to

Diophantine approximation of lines in R
d.
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Dimension Bound for Badly Approximable Grids 25

Theorem 5.7 (Approximation of affine subspaces). For all ε > 0, there exists δ > 0 such

that for almost every W0 ∈ Grass(�, d),

dimH Badε
�,d(W0) � d − � − δ.

Proof. Since the proof is very similar to that of Theorem 5.3, we keep it terse. We apply

Theorem 4.2 with flow

at = diag
(
et, . . . , et, e− �t

d−� , . . . , e− �t
d−�

)
.

Let W0 ∈ Grass(�, d), and choose gW0 ∈ G0 = SLd(R) such that gW0 ·W0 = Span(e1, . . . , e�).

For almost every W0, the orbit (atgW0Z
d)t>0 equidistributes in X [8] (note that this prop-

erty does not depend on our choice of gW0 ). Taking O = B ε
2

to be the open ball of radius

ε/2 in R
d, Theorem 4.2 shows that there exists δ > 0 such that for almost every W0,

dimH FS+(B ε
2
)(gW0Z

d) � d − δ.

Assume now that W is an affine subspace with linear part W0, and choose gW ∈ G =
ASLd(R) such that gW · W = Span(e1, . . . , e�) (as an affine subspace). It is a simple

computation to check that if W ∈ Badε
�,d(W0), then the grid gWZ

d lies in FS+(B ε
2
)(gW0Z

d),

independently of our choice of gW. The above bound on the Hausdorff dimension of

FS+(B ε
2
)(gW0Z

d) therefore implies

dimH Badε
�,d(W0) � d − � − δ.

�

6 Examples

In this section, to justify the necessity of some non-escape-of-mass assumption on x in

Theorem 4.2, we construct non-singular lattices in R
2 with lots of bad grids: x with non-

divergent orbits but for which there exists ε > 0 such that FS+(O)(x) has full Hausdorff

dimension in π−1(x) for a suitable choice of O.

Proposition 6.1 (Lattices with lots of bad grids). There exists a non-singular unimod-

ular lattice x and an open bounded set O such that

dimH FS+(O)(x) = 2.
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26 S. Lim et al.

FIG. 2. atv, for t ∈ (ti, si+1)

Fix a lattice x in R
2, assume λ1(x) � 1

10 , where λ1(x) denotes the shortest nonzero

vector in x with respect to the supremum norm, which we denote by ‖·‖, and let E = {t >

0 | λ1(atx) � 1
10 }. Assume that E can be written as a disjoint union of closed intervals

E = [s1, t1] ∪ [s2, t2] ∪ . . .

where the reals s1, s2, . . . and t1, t2, . . . are defined inductively by s1 = 0, and, for i � 1,

ti = inf
{

t > si | λ1(atx) � 1

10

}
, and si+1 = inf

{
s > ti | λ1(atx) � 1

10

}
.

Now, for each i, choose a nonzero vector v = (v1
v2

)
in x such that λ1(atix) = ‖ativ‖.

One readily checks the following

(1) ∀t ∈ (ti, si+1), λ1(atx) = ‖atv‖
(2) eti |v1| = e−si+1 |v2| � 1

10 and e−ti |v2| = esi+1 |v1| = 1
10 ,

using the fact that in dimension 2, if ‖atv‖ < 1 (and v is primitive), then λ1(atx) = ‖atv‖
(see Figure 2).

From the fact that ativ has norm 1
10 and makes an angle of at least π

4 with the first

coordinate axis, we see that the translates of the line Rativ by vectors of atix intersect

the horizontal axis in a discrete subgroup �iZ, with �i ∈ [5, 50]. Let

Bi = {γ ∈ R | d(γ , e−ti�iZ) > 2e−ti
}

.

For a grid y, we let σ(y)
def= min{‖v‖ ; v ∈ y} denote the norm of the shortest vector in y.

We claim that

∀γ ∈ Bi, ∀t ∈ [ti, si+1], σ

(

at

(

x +
(

γ

0

)))

� 1. (6.1)
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Dimension Bound for Badly Approximable Grids 27

FIG. 3. Translates of Rativ, etiBi, and the box around etiγ

To see this, observe that if γ ∈ Bi, then the box

(
etiγ

0

)

+ [−1, 1] ×
[
−e−2ti

v2

v1
, e−2ti

v2

v1

]

around ati

(
γ
0

)
does not intersect atix (see Figure 3).

Therefore, if t ∈ [ti, si+1], then the box around the origin

[−et−ti , et−ti ] ×
[
−e−ti−t v2

v1
, e−ti−t v2

v1

]
⊃ [−1, 1] ×

[
−e−ti−si+1

v2

v1
, e−ti−si+1

v2

v1

]

= [−1, 1] × [−1, 1].

This proves our claim.

To prove Proposition 6.1, we use the following elementary Hausdorff dimension

estimate.

Lemma 6.2. With the above notation, suppose limi→∞ ti
i = ∞. Then

dimH

⋂

i�1

Bi = 1.

Proof. By the mass distribution principle [7, §4.2 page 60], it suffices to construct on

B =⋂Bi, for ε > 0 arbitrarily small, a probability measure μ satisfying, for all x and all

r > 0 sufficiently small,

μ(B(x, r)) � r1−ε .
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28 S. Lim et al.

For this, we define μ1 to be the Lebesgue measure on each interval of B1 included in

[0, 1], normalized to be a probability measure. Let N1 be the number of intervals of B1

included in [0, 1]. Within bounded multiplicative constants, we have

N1 � et1

�1
� et1 .

Then, we let μ2 be the probability measure compatible with μ1 (in the sense that the μ2-

mass of a B1-interval is equal to its μ1-mass) and equal to the appropriately normalized

Lebesgue measure on each B2-interval. The number of B2-intervals inside a B1 interval is

N2 � e−t1�1

e−t2�2
� et2−t1 .

Iterating this procedure, we obtain a sequence of probability measures μn supported

on
⋂n

i=1 Bi ; then, we let μ be a weak-* limit of the sequence (μn). Note that, by our

construction, if I is a Bi-interval then for all n � i, μ(I) = μn(I).

For r > 0 sufficiently small, find i such that e−ti−1�i−1 > r � e−ti�i. Since

Bi-intervals are separated by a distance e−ti�i, the number of Bi-intervals intersecting

B(x, r) is at most r
e−ti�i

� reti , and the μ-mass of a Bi-interval is � (N1 . . . Ni)
−1 � Cie−ti ,

where C is some positive constant independent of i, so that

μ(B(x, r)) � retiCie−ti � rCi.

Using that r � e−ti−1 and that lim i
ti−1

= 0, we find that, given any ε > 0, for i large

enough (i.e., r small enough), Ci = e
ti−1

i log C
ti−1 � r−ε . Thus, for sufficiently small r > 0

(depending on ε)

μ(B(x, r)) � r1−ε .
�

We can now derive Proposition 6.1.

Proof of Proposition 6.1. Let α ∈ [0, 1] be an irrational number with continued fraction

expansion α = [n1, n2, . . . ] such that lim ni = ∞, and set

x =
(

1 α

0 1

)

Z
2.
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Dimension Bound for Badly Approximable Grids 29

The set E = {t � 0 | λ1(atx) � 1
10 } can be written as a union of disjoint intervals

E = [s1, t1] ∪ [s2, t2] ∪ . . .

and for some constant C, for all i, ti − si � C, and lim ti
i = ∞. By Lemma 6.2, the set

B = ⋂
i≥1 Bi has Hausdorff dimension 1. Moreover, by (6.1), for any γ ∈ B, for all t not in

any interval [si, ti],

σ

(

at

(

x +
(

γ

0

)))

� 1.

Since the intervals [si, ti] are disjoint and have length at most C, we find that for all

γ ∈ B and all t � 0,

σ

(

at

(

x +
(

γ

0

)))

� e−C.

This shows that for O being the 1
2e−C-ball around the origin with respect to the sup-

norm, we have that the image of the set B × [−1, 1] in the torus R
2/x is contained in

FS+(O)(x) (note that translating in the stable direction does not affect the asymptotic

properties of the at-orbit), which implies in particular that

dimH FS+(O)(x) = 2.

�
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